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Abstract

We consider longitudinal clinical data for HIV patients undergoing treatment interruptions. We
use a nonlinear dynamical mathematical model in attempts to fit individual patient data. A
statistically based censored data method is combined with inverse problem techniques to estimate
dynamic parameters. The predictive capabilities of this approach are demonstrated by comparing
simulations based on estimation of parameters using only half of the longitudinal observations to
the full longitudinal data sets.

1 Introduction

Human Immunodeficiency Virus (HIV) is a retrovirus that infects T-helper cells of the immune sys-
tem and is the causative agent for Acquired Immune Deficiency Syndrome (AIDS). HIV and AIDS
are among the world’s most serious public health concerns, affecting people of all demographics
worldwide, with some regions impacted disproportionately. As of 2003, an estimated 38 million
HIV-infected individuals are living worldwide, with approximately two-thirds in Africa, where 2.2
million people died from opportunistic infections related to AIDS in 2003 (UNAIDS 2004 Report
on the Global HIV/AIDS Epidemic [5]). Despite many successful public health and clinical inter-
ventions since the first identification of HIV-positive patients in 1981, there remains no cure and
the HIV/AIDS epidemic continues to grow.

Highly Active Antiretroviral Therapy (HAART), most commonly administered in the form of
drug cocktails consisting of at least one or more reverse transcriptase inhibitors and a protease
inhibitor, has been highly successful in suppressing HIV in many patients and therefore improving
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quality of life. However, contrary to dangerous popular myths, these drugs do not constitute a cure.
While antiretroviral drugs are widely available in the United States and Western Europe, their cost
and side effects may make their use challenging. In developing nations, UNAIDS estimates that
only 7% of the infected population has access to HAART. Access to treatment for and education
about this disease remain serious human rights issues around the world. Improved strategies are
needed for efficient and appropriate use of drug therapy in both developed and underdeveloped
countries.

Studies of the epidemiology of HIV and public health issues such as transmission (inter-host
dynamics) are important. Equally important to investigate are the effective use and improvement
of antiretroviral drugs, which depend on understanding viral behavior within each host, including
pathways of infection and effects of drugs. Understanding intra-host viral and immune system
pathways depends on knowledge from various biological areas including physiology and immunology.
Mathematical models, when combined with statistically-based inverse problem techniques, can aid
in quantifying dynamic physiologic and immunologic processes, correlating the scientific knowledge
of these processes with observed patient behavior, and predicting patient outcomes. An example
of such a modeling approach is given in this paper.

It is believed that the acute and early phases of HIV infection provide crucial information
about immune responses and viral dynamics. In particular, long-term viral set points and speed
of progression to AIDS may possibly be understood by studying these key periods. Motivated by
clinical study data from patients observed during the crucial acute infection phase and beyond, we
outline here a combined mathematical and statistical inverse problem approach for modeling HIV
infection. We apply the methods to clinical data and demonstrate the types of suggestions and
conclusions one may draw from such an effort.

A number of patients for whom we have clinical data underwent therapy interruptions. Some of
these drug holidays were unprescribed or single interruptions, while others were structured treat-
ment interruptions (STIs) according to a study protocol. STI therapy protocols are currently being
explored (not without controversy) as an alternative to continuous therapy with antiretrovirals
since in addition to offering the benefit of reduced side effects, they may also serve to boost HIV-
specific immune responses. We therefore incorporate STI protocols in our mathematical models.
A good overview of the concept of STI and its applicability in various phases of HIV infection can
be found in [16].

In previous work [3] we demonstrated that a differential equation model for in-host HIV in-
fection dynamics can describe censored clinical data obtained from patients undergoing therapy
interruptions. This entailed a process of parameter identification (estimation or model fitting) in
order to determine values for the dynamic parameters in the model that will best describe the data.
Model fitting in this manner yields valuable estimates of dynamic rates and quantities, for example
the rate of growth of virus or infectivity contact rate, which might be used to differentiate between
or explain patient behaviors.

In this paper, we explore one of the most powerful applications of mathematical models – their
ability to assist in making predictions or understanding biological phenomena. We demonstrate
how one could use longitudinal HIV viral load and CD4+ T-cell data gathered from a particular
patient over a limited observation period, in conjunction with a biologically-based mathematical
model, to make predictions about the patient’s long-term behavior. This might include the patient’s
viral load or T-cell dynamics over time or a prediction of the long-term viral load set point.

In this way, our HIV model can be used to gain insight into potential clinical outcomes. For
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example, after calibration (i.e., parameter estimation), one could use the model to explore what
would happen to a particular patient under various treatment strategies, including allowing the
patient to remain completely off treatment.

2 Clinical Data Description

The data for our investigations come from a study of over 100 adults with symptomatic acute or
early HIV-1 infection. These subjects were enrolled in a study based at Massachusetts General
Hospital and associated regional centers and followed for varying lengths of time between 1996
and 2004. The study cohort is unique in that its members were all identified soon after initial
infection, making its data particularly useful for understanding early viral dynamics and related
immune responses. A principal goal of the clinical study is to assess the potential immunologic
consequences of early treatment initiation, including preservation of HIV-specific CD4+ T-cells,
extent of latent reservoir development, and homogeneity of viral population. Clinical researchers
also strive to understand the role of early immune responses in long-term viral suppression.

Clinical and demographic data were collected at the time of study enrollment and blood draw
assays of CD4+ T-lymphocyte count and RNA viral load performed at roughly monthly follow-up
visits. Viral load was quantified with Reverse Transcriptase-Polymerase Chain Reaction (RT-
PCR) methods using the commercially available HIV-1 Roche Amplicor or Chiron Quantiplex
assay, yielding measurements in viral RNA copies per milliliter (ml). The standard assay has a
linear range of 400 to 750,000 copies/ml, while the ultra-sensitive assay has a range of 50 to 100,000
copies/ml. The latter is typically employed when a measurement is below the 400 copies/ml limit
of the standard assay, as is often the case for a patient successfully suppressing virus. Standard
flow cytometry methods were employed to obtain total plasma CD4+ T-lymphocyte counts per
microliter (µl) [13].

Nearly all subjects in the study underwent combination therapy with three or more antiretroviral
drugs, although the precise regimen varied from patient to patient as dictated by the treating
physician. Fourteen of the subjects underwent structured treatment interruptions according to a
study protocol, including patients with identification numbers 2, 4, 5, 6, 10, 13, and 14 for whom
immune responses were assessed during interruption [21]. Several others simply discontinued drugs
at various points.

In this paper we focus on data from a subset of 45 patients wherein each patient has ten or more
each of CD4 and viral load measurements in the first half of their longitudinal data. We denote this
set by PS45 and summarize the data in Table 1, which includes the clinical identification number
assigned to the patient, number of longitudinal viral load and CD4+ measurements, the total length
of time from presentation to last observation, total number of days on and off treatment, and the
number of periods (of any length) the patient was off and on therapy. The last two columns indicate
the number of available data points during the first half of each patient’s time-series. The number
of treatment interruptions varies drastically over the population and some patient records include
an initial brief off-treatment phase after presentation before therapy commenced.

The treatment patterns and overall length of observation for each of the 45 patients are depicted
in Figure 1. In these schematics, thicker lines denote on-treatment periods and the thinner lines,
off-treatment.

We expect that some aspects of the mathematical model later considered are more readily vali-
dated in the context of treatment schemes with a balance between time on and time off treatment.
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Table 1: Summary of data for 45 patients with ten or more each CD4 and viral load measurements
in the first half of their longitudinal data, ordered by clinical identification number. Includes
number of measurements, duration of observation, time on versus off treatment, and the number
of measurements in the early half of the time series.

pat num meas total days periods # in 1st half
num VL CD4 days on/off on/off VL CD4

1 102 84 1527 1316/211 4/3 49 41

2 107 82 1966 902/1064 2/2 67 48

3 76 61 1943 1589/354 3/2 40 31

4 154 107 1919 1248/671 4/4 81 58

5 158 115 2061 1067/994 4/4 88 66

6 143 111 1839 923/916 4/5 85 64

7 23 22 1932 1924/8 1/1 15 14

8 34 33 1672 1668/4 1/1 24 23

9 32 32 1626 1112/514 2/3 24 24

10 73 63 1711 582/1129 1/1 57 47

12 24 19 1575 1540/35 2/1 18 15

13 64 55 914 537/377 3/3 34 28

14 136 91 1637 659/978 3/3 78 57

15 46 46 1659 932/727 1/1 23 23

18 32 30 1545 1545/0 1/0 26 25

19 21 19 1430 1416/14 1/1 19 17

20 29 27 1581 1469/112 1/2 18 17

21 38 36 1433 1412/21 1/1 26 24

23 37 36 1505 671/834 4/5 21 21

24 36 35 1436 841/595 4/3 27 26

25 83 60 1412 1255/157 4/4 46 33

26 100 72 1434 754/680 3/4 59 37

27 36 35 1379 591/788 2/2 21 21

29 34 34 1024 1017/7 1/1 25 25

30 16 13 841 837/4 1/1 12 10

31 30 30 1256 1228/28 2/2 16 16

32 33 33 1230 1209/21 1/1 21 20

33 75 52 1302 658/644 4/4 54 34

34 24 23 1174 1173/1 1/1 14 13

36 33 31 1167 1161/6 1/1 21 19

37 25 25 1146 1139/7 1/1 18 18

39 29 28 1023 910/113 3/3 20 20

41 22 21 717 688/29 2/1 16 15

42 30 30 1218 1170/48 2/1 17 17

43 28 29 1134 1060/74 1/1 15 16

45 46 28 499 418/81 2/2 14 12

46 100 55 1004 496/508 3/3 39 24

47 23 23 1002 496/506 1/2 10 10

52 20 19 708 674/34 1/1 13 12

54 25 25 878 868/10 1/1 15 14

55 14 14 806 748/58 1/1 10 10

60 19 18 746 720/26 1/1 11 10

65 18 17 755 728/27 1/1 13 12

75 16 15 549 521/28 3/3 11 10

84 16 15 461 461/0 1/0 11 10
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Figure 1: Treatment protocols and observation periods for patients in PS45. Thick (green) lines
denote on-treatment periods whereas thin (red) lines denote off-treatment.
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Figure 2: Patient 6 CD4+ T-cell and viral load data, including censor points (lines at L̄1 =
400, L̄2 = 50) for viral load, and periods of therapy interruption (bars below data).

Of the 45 patients considered in this paper, sixteen (those numbered 2, 4, 5, 6, 9, 10, 13, 14, 15,
23, 24, 26, 27, 33, 46, and 47) spend 30–70% time off treatment. Of these only patients 9, 15, and
47 do not spend appreciable time off treatment during the early half of their observation period.

Due to the linear range limits described above, the clinical viral load assays effectively have
lower and upper limits of quantification. The upper limit is typically readily handled by repeatedly
diluting the sample until the resulting viral load measurement is in range and then scaling. The
lower limit, or left censoring point, however, directly influences the observed data. When a data
point is left-censored (below the lower limit of quantification), the only available knowledge is that
the true measurement is between zero and the limit of quantification L̄? for the assay. Those at
hand have two limits of quantification, L̄1 = 400 copies/ml for the standard and L̄2 = 50 copies/ml
for the ultra-sensitive assay. These are illustrated in sample data from patient 6 shown in Figure
2, where censored data points are those appearing identically on the horizontal censoring lines
L̄1 = 400, L̄2 = 50. A statistical methodology for handling this type of censored data is described
below in Section 3.2.

The observation times and intervals vary substantially between patients. The sample data in
Figure 2 also reveal that observations of viral load and CD4 may not have been made at the
same time points, so in general for patient number j we have CD4+ T-cell data pairs (tij1 , yij

1 ), i =
1, . . . , N j

1 and (potentially different) viral RNA data pairs (tij2 , yij
2 ), i = 1, . . . , N j

2 .
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3 HIV Model and Inverse Problem Techniques

3.1 Model description

Many HIV models have been considered in the literature, including those surveyed in [9] and [20].
To demonstrate the potential predictive ability of such mathematical models, we employ the model
developed in [1], subsequently modified in [3], and depicted in Figure 3; other models could be
readily treated in our framework. The model compartments are denoted by variables T1 (type 1
target cells, e.g., CD4+ T-cells, cells/µl), T2 (type 2 target cells, e.g., macrophages, cells/µl), VI

(infectious free virus, RNA copies/ml), VNI (non-infectious free virus, RNA copies/ml), and E
(cytotoxic T-lymphocytes, cells/µl). A superscript asterisk (∗) denotes infected cells. The available
clinical data include total CD4+ T-cell count, represented by the sum T1 +T ∗1 , and total free virus,
VI + VNI .
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Figure 3: Schematic of compartmental HIV infection dynamics model. Only key pathways are
indicated in the schematic – for further details, see the system of differential equations (1) below.

While the remaining compartments T2, T
∗
2 , and E were not observed in the data used in this

paper, they are important for modeling and predicting long-term longitudinal data. The presence
of a secondary target cell population T2 helps to satisfy a modeling requirement suggested by
Callaway and Perelson [9] in their 2002 review paper: a reasonable model of HIV infection predicts
a non-zero steady-state viral load, even in the presence of effective drug therapy. Patients subjected
to drug therapy often successfully suppress virus for a long time, potentially at undetectable levels.
However, some reservoir or mechanism exists that almost invariably causes the virus to grow out
to detectable levels upon removal of drug therapy. Hence one does not expect incorporation of
drug therapy in the model, at a sensible efficacy, to drive the viral load to zero, but rather reduce
it considerably, perhaps below the assay limits of quantification. One way to incorporate this
is shown in Figure 3, where there are two co-circulating populations of target cells, potentially
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representing CD4+ T-lymphocytes (T1) and macrophages or other HIV-targeted cells (T2). The
two cell populations may have different activation requirements or susceptibility to drug therapy,
represented by the different rate constants, thus potentially creating a non-zero, but low viral load
steady state. This is crucial for modeling our long time horizon data, where patients may remain
on treatment for an extended time. The differential efficacy also enables the model to exhibit
reasonable sensitivity of the viral load equilibrium to treatment efficacy. For a survey of models
and discussion of which exhibit reasonable sensitivity to drug efficacy, consult [9].

The documented importance of the immune system in responding to HIV infection (and espe-
cially its apparent crucial role during structured treatment interruptions) strongly motivates the
inclusion of at least one model compartment representing immune response to the pathogen. We
therefore include a measure E of cytotoxic T-lymphocyte (CTL) CD8+ response to HIV infection.
While the presently available data do not directly quantify the presence of HIV-specific CTLs, these
immune responders are important for control of infected cells and may eventually be correlated to
available epitope-challenge data. It is known that the immune response system is much more com-
plicated than as represented in a single (composite) compartment denoted as CTL effectors E.
Indeed, while present knowledge is incomplete, there are strong indications that a more complex
modeling view of immune response involving naive and activated classes of CD4+ and HIV-specific
CD8+ cells as well as memory and latent reservoir classes will be important in understanding the
chronic versus acute response of the immune system to HIV-1 infection [15, 18].

The corresponding compartmental ordinary differential equation (ODE) model for in-host HIV
infection dynamics is given by (1). This model is essentially one suggested in Callaway–Perelson
[9], but includes an immune response compartment and dynamics as suggested by Bonhoeffer, et.
al. [8]. This compartment, denoted by E, represents CTLs. The adapted system of ODEs is given
by

Ṫ1 = λ1 − d1T1 − (1− ε̄1(t)) k1VIT1 (1a)

Ṫ2 = λ2 − d2T2 − (1− f ε̄1(t))k2VIT2 (1b)

Ṫ ∗1 = (1− ε̄1(t))k1VIT1 − δT ∗1 −m1ET ∗1 (1c)

Ṫ ∗2 = (1− f ε̄1(t))k2VIT2 − δT ∗2 −m2ET ∗2 (1d)

V̇I = (1− ε̄2(t))103NT δ(T ∗1 + T ∗2 )− cVI (1e)

− (1− ε̄1(t))ρ1103k1T1VI − (1− f ε̄1(t))ρ2103k2T2VI

V̇NI = ε̄2(t)103NT δ(T ∗1 + T ∗2 )− cVNI (1f)

Ė = λE +
bE(T ∗1 + T ∗2 )

(T ∗1 + T ∗2 ) + Kb
E − dE(T ∗1 + T ∗2 )

(T ∗1 + T ∗2 ) + Kd
E − δEE, (1g)

together with an initial condition vector

(T1(0), T ∗1 (0), T2(0), T ∗2 (0), VI(0), VNI(0), E(0))T .

Here the factors 103 are introduced to convert between microliter and milliliter scales, preserving
the units from some of the published papers.

As is common in models of HIV infection, infected cells T ∗i result from encounters between
uninfected target cells Ti and infectious free virus VI in a well-mixed environment. As noted above,
this model involves two co-circulating populations of target cells, perhaps representing CD4+ T-
lymphocytes (T1) and macrophages (T2). The natural infection rate ki may differ between the two
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populations, which could account for suspected differences in activation rates between lymphocytes
and macrophages. The treatment factor ε̄1(t), described further below, represents a reverse tran-
scriptase inhibitor (RTI) that blocks new infections and is potentially more effective in population
1 (T1, T

∗
1 ) than in population 2 (T2, T

∗
2 ), where the efficacy is f ε̄1, with f ∈ [0, 1]. The differences in

infection rates and treatment efficacy help create a low, but non-zero, infected cell steady state for
T ∗2 , which is commensurate with the idea that macrophages may be an important source of virus
after T-cell depletion. The populations of uninfected target cells T1 and T2 may have different
source rates λi and natural death rates di.

Free virus particles are produced by both types of infected cells, which we assume produce virus
at the same rate (again this could be readily generalized to account for different productivity). In
this model, virus may leave the VI compartment due to natural death at rate c or via infecting a
target cell (at rate kiTi). The action of a protease inhibitor (PI), which causes infected cells to pro-
duce non-infectious virus VNI is modeled by ε̄2. Tracking non-infectious virus is important because
the clinically-measured viral load data for patients includes total free virus (sum of infectious VI

and non-infectious VNI).
Finally, the immune effectors E (CTLs), are produced in response to the presence of infected

cells and existing immune effectors. The immune response assumed here is similar to that suggested
by Bonhoeffer, et al., in their 2000 paper [8], with a Michaelis-Menten type saturation nonlinearity.
(Such a saturation type nonlinearity might be more biologically realistic in place of the product
nonlinearities used elsewhere in the model, but to date our computations do not suggest a need for
them at the present levels of modeling.) The infected cell-dependent death term in the immune
response represents immune system impairment “at high virus load”. In [8] the authors present
simulations which suggest that a model with this immune reponse structure and a latently infected
cell compartment can exhibit transfer between “healthy” and “unhealthy” locally stable steady
states via STI, making it a good candidate for our investigation. (Indeed, further investigations
[2, 7] with (1) substantiate that active control through optimal or suboptimal STI therapies can
readily effect such a transfer.) We add a source term λE to create a non-zero off-treatment steady
state for E, rather than explicitly modeling immune memory. While immune effectors are not
inherently present in the absence of pathogen, they persist at low levels during infection. We note
that other immune response models, such as those considered by Wodarz-Nowak [23] or Nowak-
Bangham [19] could be substituted if desired. However, the latter does not appear to admit multiple
stable off-treatment steady states.

The immune response we model is that of cytotoxic T-lymphocytes. CTLs act by lysing infected
cells, causing them to explode. Thus they remove infected cells from the system in the equations
for Ṫ ∗1 and Ṫ ∗2 , at rates m1 and m2, respectively. Unlike interferons, they do not directly target
free virus, so there is no interaction term with the virus compartment.

In this dynamical system, the treatment factors ε̄1(t) = ε1u(t) and ε̄2(t) = ε2u(t) represent
the effective treatment impact, consisting of efficacy factors ε1, ε2 and a time-dependent treatment
function 0 ≤ u(t) ≤ 1 representing HAART drug level, where u(t) = 0 is fully off and u(t) = 1,
fully on. Figure 4 depicts a sample time-varying treatment protocol representing structured therapy
interruption. The relative effectiveness of RTIs is modeled by ε1 and that of PIs by ε2. Since HIV
treatment is nearly always administered as combination therapy, we do not consider the possibility
of monotherapy, even for a limited period of time, though this could be implemented by considering
separate treatment functions u1(t), u2(t). In the case of model fitting, the treatment protocol u(t)
is dictated by the clinical records for each patient. For a more thorough description of the model,

9



on

off

0

1

time(t)

u(t)

Figure 4: Sample control input (treatment protocol) u(t) representing structured treatment in-
terruption. This is a schematic in that interruption periods need not be periodic and one might
assume more smooth ramp functions for the absorption and dissipation of the drug.

the interested reader is referred to [3, 1].
In this paper, x̄ will denote the vector of solutions to the ODE system (1); that is,

x̄(t) = (T1(t), T ∗1 (t), T2(t), T ∗2 (t), VI(t), VNI(t), E(t))T , (2)

where components 1–4 of x̄ are on a cells/µl scale, 5 and 6 (corresponding to VI and VNI) on a
copies/ml scale, and 7 on a cells/µl scale. The differential equation model (1) can therefore be
represented by

d x̄

d t
= ḡ(t, x̄; q),

with q denoting model dynamic parameters and ḡ the vector of derivatives. Model fits will be to the
base-10 logarithm scale of these quantities (x = log10 x̄) and in general, variables with an overbar
will denote an unscaled quantity and those without denote log10-transformed or scaled variables.

In solving the HIV dynamics system numerically we substitute a log-transformed system. This
resolves a problem of states becoming unrealistically negative during solution due to round-off error:
nonnegative solutions of this model should stay so throughout numerical simulation. It also enables
efficient handling of unrealistic cases where states get infinitesimally small during integration due to
parameters selected by optimization algorithms. From a statistical point of view, log transformation
is a standard technique to render the observations more nearly normally distributed, which supports
use of the least squares criterion as in Section 3.2. Using the transformation x = log10(x̄), with the
original system ˙̄xi = ḡi(t, x̄; q) we obtain the system

dxi

dt
=

10−xi

ln(10)
ḡi(t, 10x; q), i = 1, . . . , 5, 7, (3)

which is the log-transformed analog of a reduced system for all states except VNI . Given a vector of
model dynamics parameters q and specified initial conditions x̄(0), we calculate numerical solutions
for the reduced model using the variable-order adaptive BDF-based integrator included in Lawrence
Livermore’s LSODE [12] with relative error tolerance 10−9.

Having obtained the model solution x(t) to (3) and therefore x̄(t) without the VNI compo-
nent, we use its information on T ∗1 (t) and T ∗2 (t) to integrate for VNI using composite sixteen-point
Gaussian quadrature. If TF denotes the final time (day) at which a solution is desired, then for
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t = 1, . . . , TF we integrate on one day subintervals [t− 1, t]:

VNI(t) = VNI(t− 1)ec +
∫ t

t−1
e−c(t−s)

[
ε̄2103NT δ (T ∗1 (s) + T ∗2 (s))

]
ds,

using sixteen Gauss points to evaluate the integral in the second term. We take this approach rather
than integrating the full seven-state ODE system since in the absence of PI treatment (ε̄2(t) ≡ 0),
exponential decay makes it impractical to solve for VNI on the logarithmic scale.

3.2 Inverse problem and censored data techniques

We wish to use the HIV model (1) to describe clinical data and make predictions, but it must first
be “calibrated” to patient data by estimating appropriate parameters. That is, we use data (either
partial or full longitudinal sets) to carry out inverse or parameter estimation problems to obtain
patient-dependent parameters in the model. In this section we describe the standard nonlinear
least squares method for doing so and then modify it with a method for treating the censored
data measurements. As noted in the data description, in performing an inverse problem we do not
have the luxury of observing the full vector of model states at each measurement time. Given an
observation operator appropriate for the data, let x̄ denote native model solutions and z̄ = Ox̄ be
the observed model solutions. Recall that the number of observations might vary from patient to
patient, so for each patient j = 1, . . . , NP , we have times {tij1 , i = 1, . . . N j

1} for CD4 measurements
y1(t) and {tij2 , i = 1, . . . N j

2} for viral RNA measurements y2(t). We fit the model using the base-10
logarithm of these quantities: x = log10 x̄, z = log10 z̄, y = log10 ȳ.

The inverse problem method will employ data from a single patient j in order to estimate one
or more parameters (q). In this case, for each fixed patient j, the goal is to fit the ODE model to
his data by minimizing the cost criterion

q∗j = arg min
q∈Q

J(q) =
2∑

s=1

1

N j
s

Nj
s∑

i=1

∣∣zs(tijs ; q)− yij
s

∣∣2 (4)

over an admissible parameter set Q ⊂ Rp to obtain optimal estimates. This is the typical nonlinear
least squares formulation, where J(q) depends through z on the solution to the nonlinear system
of differential equations. There is a substantial literature on such problems [6], and in particular,
many sampling- and gradient-based methods are available to iteratively solve (4) for q∗j (see Kelley
[14] and the references therein). From a statistical point of view, minimizing (4) corresponds to
maximum likelihood estimation of q assuming that the log-scaled measurements yij

s are normally
distributed, i.e.,

yij
s ∼ N (zs(ti; q0), σ2

s), s = 1, 2,

for some the true underlying parameter values q0 and variance σ2
s , where (i) σ2

1 = σ2
2, and both log

transformed CD4 and viral RNA measurements are (ii) independent across time (so not serially
correlated) and (iii) independent of each other at each time. Assumptions (ii) and (iii) are reasonable
approximations if it is assumed that the dominant source of variation in ys values about zs is assay
error, with joint behavior at each time and across time of error-free CD4 and viral RNA values
dictated primarily by the model. Assumption (i) is likely violated, as variation in CD4 and viral
RNA measurements due to assay error is apt to be different. To take this into account would involve
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weighting each summand indexed by s in q∗j by estimates of 1/σ2
s and require some modification to

the algorithm described next; for demonstration purposes, we focus on (4), recognizing that failure
to weight in this manner may result in estimators for q that are less precise.

When viral load measurements are below the limit of quantification for the assay used, the
observed values yij

s do not represent the true data value and come with knowledge of censoring
included. We must therefore modify the optimization problem to include this information. This
may be accomplished by employing standard methods for censored data regression analysis [4, 22]
as follows.

Unscaled measurements of viral load (second observed component, ȳi
2) are censored when below

the limit of quantification, at either L̄1 = 400 or L̄2 = 50. In handling the censored data, we
exploit the assumption that the log-scaled measurements are normally distributed. Denote the log-
scaled censoring points by L1 = log10 L̄1, L2 = log10 L̄2. For censored data points, the available
knowledge is that the observed value yi

2 ≤ Li, where Li denotes the relevant censoring point
(Li = L1 or Li = L2) at time ti.

In this context we observe pairs (wi, χi), i = 1, . . . , N , where

wi =

{
yi
2 if yi

2 > Li

Li if yi
2 ≤ Li

χi = I{yi
2>Li},

and IA is the indicator function for the set A. Defining the standard normal pdf φ(ξ) = 1√
2π

e−ξ2/2

with corresponding cdf Φ(ξ) =
∫ ξ
−∞ φ(s)ds, we have that the viral load portion of the likelihood

function for (q, σ2) given the observations wi is

L̄(q, σ2) =
N∏

i=1

[
1
σ2

φ

(
wi − zi

2

σ2

)]χi [
Φ

(
wi − zi

2

σ2

)]1−χi

,

where the first term accounts for the probability of observing wi given that it is uncensored and
the second term the probability that the observation is in the interval (−∞, Li) when censored.
This is using a truncated normal distribution for the censored measurements. The log-likelihood is

L(q, σ2) =
N∑

i=1

(
χi

[
log φ

(
wi − zi

2

σ2

)
− log σ2

]
+ (1− χi)

[
log Φ

(
wi − zi

2

σ2

)])

=
N∑

i=1

(
χi

[
log φ

(
yi
2 − zi

2

σ2

)
− log σ2

]
+ (1− χi)

[
log Φ

(
Li − zi

2

σ2

)])
, (5)

which we maximize to estimate q and σ2. This is analogous to the typical log likelihood estimator
in the absence of a limit of detection, where

L(q, σ2) = −N

2
log 2π −N log σ2 −

N∑

i=1

(yi
2 − zi

2)
2

2σ2
2

. (6)

However, while maximizing (6) in the parameters q is equivalent to minimizing the sum of squared
residuals

∑N
i=1(y

i
2−zi

2)
2 (typical least squares such as (4)) and the estimation of q and σ2 decouple,
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maximizing (5) is not as simple, since a joint estimation of q and σ2 must be performed. Maximiz-
ing (5) is possible with the Expectation Maximization (EM) algorithm [10, 17], which iteratively
updates the estimates of q and σ2 until the maximum is achieved.

First, with the assumptions about distributions made above, let ξi = Li−zi
2

σ2
and Λ(ξi) = φ(ξi)

Φ(ξi)

and use properties of a truncated normal distribution to obtain

E
[
yi
2|yi

2 ≤ L
]

= zi
2 − σ2Λ(ξi), and

E
[
(yi

2)
2|yi

2 ≤ L
]

= (zi
2)

2 − 2σ2z
i
2Λ(ξi)− σ2

2ξ
iΛ(ξi) + σ2

2.

These can be used to update the data points and estimate of squared residuals for the second
observed state by the following

ỹi = χiyi
2 + (1− χi)E

[
yi
2|yi

2 ≤ Li
]

= χiyi
2 + (1− χi)

[
zi
2 − σ2Λ(ξi)

]
(7)

and

r̃i = χiE
[
(yi

2 − zi
2)

2
]
+ (1− χi)E

[
(yi

2 − zi
2)

2|yi
2 ≤ L

]

= χi(yi
2 − zi

2)
2 + (1− χi)

{
E

[
(yi

2)
2|yi

2 ≤ Li
]− 2zi

2E
[
(yi

2)|yi
2 ≤ Li

]
+ (zi

2)
2
}

= χi(yi
2 − zi

2)
2 + (1− χi)σ2

2

[
1− ξiΛ(ξi)

]
. (8)

We can thus outline the EM Algorithm as follows:.

Algorithm 3.1. Expectation Maximization (EM) Algorithm

Step 1 (Initialize) Create adjusted data ỹi by replacing censored yi
2 values (those for which χi = 0)

by Li/2, and use ordinary least squares to estimate q̂(0) using both CD4 data yi
1 and viral

RNA data ỹi (which includes replaced censored values). Obtain an initial estimate for σ2
2

from

(σ̂(0)
2 )2 =

1
N2

N2∑

i=1

∣∣∣ỹi − z2(ti2; q̂
(0))

∣∣∣
2
.

Set k = 0.

Step 2 Define ẑ
i(k)
2 = z2(ti; q̂(k)) and ξ̂i(k) = Li−ẑ

i(k)
2

σ̂
(k)
2

and update the data and residuals by

ỹi(k) = χiyi
2 + (1− χi)

[
ẑ

i(k)
2 − σ̂

(k)
2 Λ(ξ̂i(k))

]
(9)

r̃i(k) = χi(yi
2 − ẑ

i(k)
2 )2 + (1− χi)(σ̂(k)

2 )2
[
1− ξ̂i(k)Λ(ξ̂i(k))

]
. (10)

Step 3 Update the estimates to q̂(k+1), σ̂
(k+1)
2 by performing ordinary least squares minimization in

the parameters q

q̂(k+1) = arg min
q

N1∑

i=1

∣∣yi
1 − z1(ti1; q)

∣∣2 +
N2∑

i=1

∣∣∣ỹi(k) − z2(ti2; q)
∣∣∣
2
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and computing

(σ̂(k+1)
2 )2 =

1
N2

N2∑

i=1

r̃i(k).

If relative changes in q̂ and σ̂ are small, terminate. Otherwise set k = k + 1 and then go to
Step 2.

This iterative process yields estimates of the parameters, variance, and expected values of the
data at times where censored observations were recorded. This information can then be used to
compute standard errors and confidence intervals on parameter estimates. While this is not pursued
here, see [3] for further discussions and results.

3.3 Validation process

One of our goals is to develop a methodology to use patient data from early infection periods
with models to predict long term set points (e.g., viral loads, CD4 counts) in individual patients.
The current model requires values of 20 model parameters and 7 initial conditions to carry out
longitudinal simulations. While our current data sets typically contain from 4 to 5 years data
for each patient and allows us to estimate all 27 of these values, we would not expect sufficient
data in early disease progression in patients to allow us to estimate all model parameters and
initial conditions. One approach to lessen this burden would be to use “book” values or previous
population average values (in general, book values are not yet available for such models) for some
of the parameters to which the model set points are less sensitive. To test this idea we used our
rich data sets to estimate all 27 parameter and initial condition values and then averaged these to
obtain population averages. We then fixed 16 (12 parameters and 4 initial conditions- see Table 2
below) of these at the population averages and attempted only to estimate the remaining 8 model
parameters and 3 initial conditions. This is a reasonable scenario for testing model prediction
capabilities in the presence of limited longitudinal data for a given patient in the early stages of
therapy.

To validate the concept of using the model to predict long-term behavior, we consider the first
half of each patient’s time series data in estimating parameters and then use the calibrated model
to try to predict the remaining half of the data. We employ the following process for each patient
in the data set:

1. Fix a number of model parameters (12) and initial conditions (4) at average
values obtained from earlier model fitting processes. While one could alternately use
published literature values or those obtained through another process, we used values resulting
from initial model fitting to each of the 45 patients. In this process, we fit the differential
equation model to each patient’s half time series data by estimating all 20 model dynamics
parameters and seven initial conditions. This involves an initial optimization process with the
hypercube sampling-based DIRECT algorithm [11], followed by application of the censored
data algorithm within which we employ a gradient-based optimizer. We then average the
estimated values across the 45 patient population to obtain “typical” parameter values. Values
obtained this way are shown in Table 2 below and are comparable to those obtained from
literature (see [3] for a summary), from using the full time series data, or from using a larger
patient population.
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Table 2: Average parameter values (12) and initial conditions (4) used in model fitting with half
and full longitudinal data sets.

λ2 1.0099e-01 Kd 8.3790e-01
d2 2.2109e-02 δE 7.0299e-02
f 5.3915e-01 fixed values
k2 5.5290e-04 ρ1 1
δ 1.8651e-01 ρ2 1

m1 2.4385e-02 initial conditions
m2 1.3099e-02 T 0

2 1.7545e+01
λE 9.9085e-03 T ∗02 6.0955e-01
Kb 3.9087e-01 V 0

NI 4.9909e+03
dE 1.0213e-01 E0 1.8834e-01

2. Use the first half of the patient’s longitudinal data to estimate the remaining
dynamic parameters and initial conditions. We estimate eight dynamic parameters
(λ1, d1, ε1, k1, ε2, NT , c, bE) and three initial conditions (T 0

1 , T ∗01 , V 0
I ). We again apply the

DIRECT algorithm, followed by the gradient-based censored data algorithm to obtain optimal
parameter estimates.

3. Evaluate how well the model, given these estimated parameters, describes the full
longitudinal data set for the patient. We simulate the trajectory over the full time span
of the patient’s observations, using the model parameters obtained from the first half of the
data.

In addition, we also compare these model fitting results to those obtained by applying the
DIRECT/censored sequence of algorithms to the full longitudinal data set. In many cases, the
results obtained are similar.

4 Model fits and sample predictions

Fitting patient data using half the longitudinal data and then extrapolating over the whole time
horizon often yields results similar to fitting the entire data set, supporting the model’s predictive
ability. In Figures 5 and 6 corresponding to patients 14 and 4, respectively, we see model fits ob-
tained using half and full time series data. Both these patients undergo two treatment interruptions
during the early half of their data. The fit to viral load data is nearly the same regardless of whether
half or all of the data are used. The fits to T-cell data are qualitatively different, but using half or
all the data both yield plausible fits to data. For patient 14, the predicted viral load during the
final off-treatment phase is within 1 log of the observed data. Similar results are obtained for other
patients undergoing multiple interruptions, e.g., see figures for patients 2 and 6 in the appendix.

While calibrated solely with total virus and total T-cell count data, the model also suggests
dynamics for the other (unobserved compartments). For parameters estimated using half of the
data from patient 4, Figure 7 presents the model dynamics for target cell population 1, target cell
population 2, total virus, and immune response E.
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Figure 5: Model fit to data (‘x’) for patient 14 with parameters estimated from half longitudinal data
(solid line) or full dataset (dash-dot line). Circles denote predictions of censored data measurements
and the vertical line delineates between the two halves of the longitudinal data.
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Figure 6: Model fit to data (‘x’) for patient 4 with parameters estimated from half longitudinal data
(solid line) or full dataset (dash-dot line). Circles denote predictions of censored data measurements
and the vertical line delineates between the two halves of the longitudinal data.
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Figure 7: Model dynamics using parameters estimated from half of the time series data from patient
4.

From Figure 8, observe that even with two interruptions wherein viral peaks are well represented
by the model, the method may not yield an accurate prediction. As calibrated with only half the
data in time, the model does not accurately predict the long-term off-treatment steady state ex-
hibited by patient 26. The model fit resulting from using half the data underpredicts the viral load
when off treatment, which is likely related to either an underestimation of viral productivity or viral
infectivity, overestimation of viral death rate, or poor modeling/estimation of immune responsive-
ness. In this period of treatment discontinuation (beginning about 850 days into observation), the
T-cells, virus, and immune responders all interact without the intervention of drugs, i.e., naturally.
The prediction may therefore also be due to the overly simplistic and limited immune response
model considered here. A conservative estimate of the off treatment viral load setpoint results even
when using the full time series data, suggesting that for this patient, fixing the other parameters
at the prescribed average values made it difficult to fit the model. This method should probably
be accompanied by a measure of certainty of the prediction, perhaps based on how well the early
time series data has been fit. (Although it would be difficult to argue which of the two fits to the
early longitudinal data is “better”.)

As shown in Figure 9 for patient 24, it is possible to gain valuable information about a patient
from even a single treatment interruption. Patients 10, 12, 13, and 25 yield similar results. Overall
in most cases, having one or two treatment interruptions yields a good prediction of long-term viral
dynamics. For example, for the eleven patients with a single treatment interruption during the first
half of their data, the method only severely mispredicts the remaining data for patient 27. For the
remainder of patients we see similar results when using half or all of the data.
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Figure 8: Model fit to data (‘x’) for patient 26 with parameters estimated from half longitudinal data
(solid line) or full dataset (dash-dot line). Circles denote predictions of censored data measurements
and the vertical line delineates between the two halves of the longitudinal data.
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Figure 9: Model fit to data (‘x’) for patient 24 with parameters estimated from half longitudinal data
(solid line) or full dataset (dash-dot line). Circles denote predictions of censored data measurements
and the vertical line delineates between the two halves of the longitudinal data.
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Figure 10: Model fit to data (‘x’) for patient 3 with parameters estimated from half longitudinal data
(solid line) or full dataset (dash-dot line). Circles denote predictions of censored data measurements
and the vertical line delineates between the two halves of the longitudinal data.

As one might expect, if a patient does not undergo a therapy interruption during the observation
period used to fit the model, it is difficult to predict a later treatment interruption. We examine this
for patient 3 in Figure 10 and similar results hold for patients 23 and 47. The difference in model
dynamics is reflected in the estimated parameters. For example, for patient 3, the estimates for NT

(average virus released per burst T-cell) are 1.829e+01 (half data) versus 3.677e+01 (full data), so
the underprediction of viral load in this case may well be simply the result of underestimation of
the rate NT when only using half the data.

5 Conclusions

A number of goals have been achieved in this paper. First, we have demonstrated that we can fit a
complex mathematical model of HIV infection to long-term time series clinical data for individual
patients. The data includes patients who experienced treatment interruptions. The novel inverse
problem method we employ incorporates a censored data algorithm. After fitting the model to
data, we investigated capabilities of the model in prediction. In particular our findings suggest
that: (i) one may fit all time series and subsequently predict possible multiple stable steady states
and (ii) one could use a subset of data to fit the model and then extrapolate over longer time
horizons to predict viral load set points that might be most valuable in therapy decisions. We thus
demonstrate that the treatment interruption data can provide crucial information for model fitting
in terms of determining CD4 and viral load steady states.

While the model provides reasonable fits to most patient data, there are rather obvious areas for
model improvement including additional compartments to better represent overall immune response
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to infection. We are currently pursuing such modeling efforts among others.
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Appendix: Full Results

This section contains the full model fitting results for all 45 patients considered. The tables contain
the estimated parameters for all 45 patients. They are followed by graphs showing model fits to
data for the entire patient set.
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ind. ID λ1 d1 ε1 k1

half full half full half full half full

1 1 1.431e+00 1.096e+00 2.765e-03 1.000e-03 2.363e-01 6.620e-01 9.850e-07 2.407e-07

2 2 6.774e-01 2.846e+00 1.229e-03 4.477e-03 2.781e-01 8.158e-04 5.828e-06 3.637e-06

3 3 5.658e+00 5.412e+00 8.609e-03 9.775e-03 4.906e-01 2.890e-01 1.168e-05 1.330e-06

4 4 2.941e+00 4.633e+00 4.223e-03 4.533e-03 4.865e-01 6.017e-01 2.308e-06 1.976e-06

5 5 1.389e+00 1.310e+01 2.764e-03 2.213e-02 2.300e-01 5.555e-01 1.603e-06 2.587e-06

6 6 1.685e+00 2.086e+00 1.347e-03 1.007e-03 5.621e-01 9.440e-02 2.999e-06 5.908e-07

7 7 8.980e+00 4.694e+00 2.782e-03 2.359e-03 4.196e-01 4.489e-01 7.528e-05 9.602e-05

8 8 4.422e+01 4.838e+01 8.273e-02 8.244e-02 4.086e-01 7.484e-01 2.756e-06 5.491e-06

9 9 6.166e+01 5.312e+01 9.994e-02 1.000e-01 4.390e-01 5.256e-01 4.491e-06 4.568e-06

10 10 1.284e+00 2.657e+01 1.635e-03 3.248e-02 1.042e-01 3.814e-01 1.301e-07 3.346e-06

11 12 6.374e-01 1.024e+00 1.291e-03 2.163e-03 6.523e-01 5.068e-01 2.605e-06 1.141e-06

12 13 1.112e+01 4.314e+00 1.365e-02 5.730e-03 7.258e-02 2.707e-01 3.287e-06 2.927e-06

13 14 2.787e+00 3.973e+00 3.738e-03 3.935e-03 2.858e-01 5.833e-01 1.197e-06 1.379e-06

14 15 2.954e+01 3.058e+00 4.570e-02 5.110e-03 3.925e-02 3.877e-01 1.059e-09 1.479e-06

15 18 1.910e-01 2.636e+00 1.513e-03 5.479e-03 1.624e-01 6.462e-01 3.240e-06 6.964e-06

16 19 7.534e-01 4.114e-01 1.002e-03 1.001e-03 6.217e-01 1.444e-01 3.026e-05 1.416e-05

17 20 4.837e+00 1.334e+00 4.881e-03 1.047e-03 4.635e-01 8.367e-01 1.103e-06 1.402e-09

18 21 4.238e+01 4.660e+01 6.402e-02 6.253e-02 7.841e-01 6.672e-01 2.535e-06 2.912e-06

19 23 7.945e-01 4.119e+01 2.175e-03 9.972e-02 2.822e-02 9.616e-01 6.160e-06 7.640e-07

20 24 4.105e+01 1.263e+01 9.892e-02 3.779e-02 1.095e-03 2.914e-02 3.673e-06 2.275e-07

21 25 3.146e+00 1.447e+01 3.275e-03 2.380e-02 9.132e-01 4.505e-01 1.378e-06 8.053e-06

22 26 4.933e+00 4.400e+00 4.121e-03 2.532e-03 6.350e-01 8.120e-01 4.092e-06 9.991e-07

23 27 3.118e+00 2.831e+01 1.889e-03 1.764e-02 8.686e-01 9.604e-01 6.450e-07 2.479e-06

24 29 2.496e-01 1.124e+00 1.146e-03 1.535e-03 6.183e-04 5.341e-05 2.760e-06 2.895e-06

25 30 1.334e+00 3.114e+01 1.785e-03 4.194e-02 5.067e-01 6.220e-01 6.820e-09 1.666e-06

26 31 3.583e+01 3.520e+00 4.492e-02 3.493e-03 1.459e-01 2.675e-01 1.231e-06 1.817e-05

27 32 2.266e-01 5.600e+01 1.007e-03 1.000e-01 1.675e-04 5.674e-01 3.842e-06 7.334e-06

28 33 1.855e+00 3.045e+00 1.282e-03 1.001e-03 5.006e-01 7.707e-01 1.824e-06 3.903e-07

29 34 7.310e-01 3.562e-01 1.918e-03 1.032e-03 8.173e-01 8.132e-01 8.567e-07 1.322e-06

30 36 3.165e+01 3.161e+01 4.626e-02 3.884e-02 2.622e-01 3.240e-02 1.468e-05 1.458e-05

31 37 2.460e+00 2.929e+00 4.622e-03 6.167e-03 1.223e-01 1.945e-02 3.790e-08 4.127e-09

32 39 6.157e+00 8.929e-01 1.329e-02 1.000e-03 4.967e-01 4.971e-01 5.680e-08 1.883e-07

33 41 1.028e+01 1.651e+01 1.036e-02 1.822e-02 5.237e-01 4.848e-01 2.947e-06 3.817e-06

34 42 1.204e+01 6.257e+00 1.661e-02 8.649e-03 9.092e-02 1.800e-01 3.991e-06 2.912e-06

35 43 3.244e+01 1.439e+01 6.169e-02 2.584e-02 7.414e-01 9.480e-01 1.672e-06 1.496e-06

36 45 1.368e+00 1.525e+00 2.715e-03 3.073e-03 7.329e-02 2.694e-01 9.389e-09 1.669e-07

37 46 2.156e+00 3.170e+00 1.100e-03 1.413e-03 6.592e-01 6.190e-01 2.381e-06 1.691e-06

38 47 3.894e+00 6.625e+00 6.597e-03 1.010e-02 2.750e-04 9.308e-01 9.378e-06 3.597e-07

39 52 9.740e+00 1.208e+01 3.083e-02 3.827e-02 9.312e-01 8.626e-01 8.586e-07 7.796e-07

40 54 5.158e-01 1.534e+00 1.068e-03 2.508e-03 4.259e-01 3.711e-01 9.058e-07 1.004e-06

41 55 1.691e+01 1.431e+01 4.635e-02 3.664e-02 7.547e-01 7.198e-01 1.820e-06 1.656e-06

42 60 1.967e+00 1.213e+00 1.581e-03 1.000e-03 8.386e-01 6.699e-01 1.758e-07 5.959e-07

43 65 7.741e+00 6.606e+00 4.640e-03 4.992e-03 2.664e-01 3.021e-02 9.225e-05 7.595e-05

44 75 1.468e-01 7.837e+00 1.346e-03 1.344e-02 6.004e-01 6.257e-01 1.495e-06 1.647e-06

45 84 4.191e-01 3.871e+00 1.004e-03 5.827e-03 8.186e-01 7.427e-01 1.211e-05 6.357e-06

average 1.012e+01 1.228e+01 1.681e-02 1.986e-02 4.169e-01 5.024e-01 7.189e-06 6.850e-06
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ind. ID ε2 NT c bE

half full half full half full half full

1 1 8.104e-01 8.381e-01 1.826e+01 1.941e+01 8.438e+00 4.784e+00 5.410e-02 1.299e-02

2 2 6.949e-01 7.262e-01 4.858e+01 5.095e+01 6.292e+01 5.921e+01 1.748e-02 8.544e-02

3 3 8.031e-01 4.737e-01 1.829e+01 3.677e+01 1.469e+01 2.226e+01 1.875e-02 7.055e-02

4 4 6.338e-01 5.043e-01 1.439e+01 1.904e+01 1.191e+01 1.936e+01 8.091e-02 9.785e-02

5 5 6.929e-01 5.349e-01 1.197e+01 2.039e+01 7.869e+00 2.010e+01 1.444e-02 1.111e-02

6 6 3.682e-01 6.858e-01 1.510e+01 1.015e+01 2.694e+01 6.646e+00 3.821e-02 1.347e-02

7 7 8.383e-06 8.921e-06 7.743e+01 4.576e+01 1.291e+01 1.538e+01 2.350e-01 2.200e-01

8 8 7.170e-01 7.117e-01 1.102e+01 1.908e+01 5.975e+00 1.027e+01 2.450e-02 1.032e-02

9 9 4.393e-01 5.213e-01 2.425e+01 4.181e+01 2.663e+01 2.835e+01 4.978e-02 1.079e-02

10 10 6.804e-01 1.516e-01 1.432e+01 1.387e+01 9.551e+00 3.859e+01 1.596e-02 5.962e-02

11 12 5.597e-01 7.654e-01 5.403e+01 2.021e+01 4.226e+01 7.619e+00 1.171e-02 1.104e-02

12 13 3.178e-01 3.331e-01 1.016e+01 1.279e+01 2.754e+01 2.686e+01 2.977e-02 3.657e-02

13 14 6.406e-01 4.414e-01 1.420e+01 1.379e+01 1.206e+01 1.463e+01 2.586e-02 1.073e-02

14 15 3.485e-03 6.252e-01 1.283e+01 5.143e+01 2.258e+00 5.174e+01 5.837e-01 2.380e-02

15 18 9.556e-01 9.568e-01 2.700e+01 3.931e+01 1.324e+00 2.272e+00 1.845e-01 1.860e-01

16 19 8.985e-01 9.286e-01 1.808e+01 2.819e+01 5.933e+00 8.384e+00 6.349e-02 1.359e-02

17 20 4.650e-01 5.248e-01 1.495e+01 2.056e+01 1.580e+01 1.182e+01 1.491e-02 1.292e-02

18 21 8.510e-01 7.251e-01 5.848e+01 2.385e+01 1.113e+01 1.110e+01 4.268e-02 1.171e-02

19 23 1.347e-01 7.516e-01 1.089e+01 5.031e+01 3.787e+01 1.373e+01 1.017e-02 2.234e-02

20 24 8.128e-01 9.537e-01 1.284e+01 3.758e+01 6.294e+00 2.132e+00 1.187e-02 1.339e-02

21 25 7.444e-03 5.635e-01 7.062e+01 1.000e+01 4.689e+01 1.560e+01 2.665e-02 1.413e-02

22 26 2.893e-01 2.148e-02 2.890e+01 5.870e+01 6.034e+01 4.562e+01 3.413e-02 1.838e-02

23 27 4.771e-01 3.117e-01 1.893e+01 6.631e+01 1.034e+01 5.391e+01 2.492e-02 7.570e-02

24 29 5.769e-01 5.542e-01 1.001e+01 1.317e+01 1.336e+01 2.268e+01 1.881e-02 1.140e-02

25 30 1.559e-01 6.603e-01 2.064e+01 1.823e+01 2.041e+00 1.089e+01 5.013e-01 1.473e-02

26 31 3.661e-02 2.515e-05 4.481e+02 2.628e+01 5.055e+01 1.406e+00 5.187e-01 4.359e-01

27 32 4.115e-01 8.103e-01 1.055e+01 1.842e+01 2.320e+01 8.741e+00 1.711e-02 8.690e-02

28 33 3.870e-01 4.407e-01 1.008e+01 9.250e+01 1.460e+01 5.622e+01 5.190e-02 2.800e-02

29 34 5.530e-01 6.389e-01 1.740e+01 1.904e+01 9.334e+00 8.521e+00 1.820e-02 2.826e-02

30 36 1.684e-01 3.996e-02 9.986e+01 9.814e+01 1.004e+01 1.661e+01 4.775e-01 4.474e-01

31 37 2.365e-02 3.919e-03 1.108e+01 1.097e+01 2.215e+00 2.581e+00 4.191e-01 4.315e-01

32 39 9.729e-01 9.147e-01 7.876e+01 4.566e+01 2.141e+00 5.056e+00 1.199e-02 1.915e-02

33 41 4.960e-01 5.832e-01 4.069e+01 5.621e+01 5.096e+01 7.856e+01 1.883e-02 4.557e-02

34 42 6.923e-01 6.897e-01 4.132e+01 1.426e+01 5.432e+01 1.300e+01 1.716e-02 3.097e-02

35 43 5.871e-01 4.679e-01 2.007e+01 1.920e+01 1.106e+01 1.074e+01 1.906e-01 2.123e-02

36 45 9.855e-01 8.945e-01 1.738e+02 1.276e+01 3.947e+00 1.181e+00 9.015e-02 1.616e-01

37 46 1.738e-01 3.326e-01 1.182e+01 1.256e+01 2.072e+01 1.625e+01 2.104e-02 1.357e-01

38 47 5.686e-02 8.527e-01 1.005e+01 5.914e+01 5.358e+01 8.980e+00 1.387e-02 3.468e-02

39 52 7.330e-01 7.457e-01 2.860e+01 2.309e+01 7.679e+00 6.375e+00 4.291e-02 2.233e-02

40 54 7.123e-01 7.049e-01 1.829e+01 1.574e+01 9.054e+00 8.532e+00 1.716e-02 2.109e-02

41 55 5.331e-01 5.945e-01 1.981e+01 1.974e+01 1.126e+01 1.032e+01 2.676e-02 3.119e-02

42 60 7.952e-01 6.446e-01 3.167e+01 1.845e+01 7.270e+00 9.064e+00 2.666e-02 1.111e-02

43 65 2.513e-05 1.542e-01 5.538e+01 5.690e+01 1.088e+01 1.843e+01 2.601e-01 2.629e-01

44 75 3.369e-01 3.170e-01 1.968e+01 1.690e+01 1.694e+01 1.561e+01 1.180e-02 1.453e-02

45 84 8.917e-01 6.526e-01 1.216e+02 1.667e+01 2.714e+01 1.129e+01 2.186e-01 1.091e-02

average 5.007e-01 5.499e-01 4.233e+01 3.098e+01 1.956e+01 1.848e+01 1.023e-01 7.444e-02
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ind. ID T 0
1 T ∗01 V 0

I

half full half full half full

1 1 1.609e+03 9.215e+02 2.307e+02 1.269e+03 6.922e+04 7.185e+04

2 2 1.354e+03 1.354e+03 8.171e+00 2.644e+01 2.007e+05 2.206e+05

3 3 1.223e+03 1.351e+03 9.544e-02 4.588e+01 1.838e+05 3.762e+05

4 4 1.210e+03 1.202e+03 2.201e+01 6.165e+01 8.554e+05 9.964e+05

5 5 1.132e+03 1.132e+03 1.053e+02 1.809e+02 4.677e+05 5.487e+05

6 6 1.165e+03 3.265e+02 6.655e+00 5.745e+00 7.979e+05 7.475e+05

7 7 2.096e+02 1.767e+02 1.696e+01 9.260e+02 7.424e+05 7.232e+05

8 8 2.105e+02 2.110e+02 4.999e+02 4.331e+02 7.478e+05 7.325e+05

9 9 6.637e+02 3.917e+02 1.092e+00 1.697e-01 5.923e+05 5.535e+05

10 10 7.357e+02 5.455e+02 1.137e+02 1.530e+02 3.283e+04 2.820e+04

11 12 6.218e+02 4.910e+02 4.566e+02 3.285e+02 4.940e+04 5.368e+04

12 13 9.033e+02 9.501e+02 4.767e+00 6.263e+00 6.219e+05 2.517e+05

13 14 1.539e+03 1.235e+03 6.126e+01 2.200e+02 9.173e+04 2.318e+04

14 15 4.185e+02 8.209e+02 3.965e-01 1.301e-02 2.141e+04 1.222e+04

15 18 1.459e+03 1.490e+03 2.803e-02 9.113e-02 2.176e+05 2.226e+05

16 19 9.161e+02 9.252e+02 2.353e-02 1.689e-02 2.311e+04 2.189e+04

17 20 1.109e+03 9.723e+02 4.948e-01 4.725e+01 1.714e+04 1.528e+04

18 21 7.587e+02 1.586e+03 3.568e+02 7.143e+01 8.013e+05 7.463e+05

19 23 7.308e+02 2.192e+02 5.376e+01 2.710e-02 7.069e+03 7.596e+03

20 24 1.950e+02 2.759e+02 3.475e+02 1.089e+02 5.758e+05 5.334e+05

21 25 7.774e+02 7.776e+02 5.331e+02 4.480e-01 5.488e+05 7.366e+04

22 26 1.062e+03 1.059e+03 8.386e+00 6.608e+02 6.371e+04 8.938e+05

23 27 8.754e+02 8.511e+02 1.732e+01 5.050e+00 3.173e+05 2.390e+05

24 29 1.388e+03 1.610e+03 1.497e-01 7.263e-01 8.105e+04 1.109e+05

25 30 5.982e+02 4.344e+02 2.141e+01 8.035e+01 7.230e+04 6.761e+04

26 31 3.006e+02 6.708e+02 1.905e+01 2.372e+02 9.483e+04 9.371e+04

27 32 1.122e+03 1.121e+03 5.669e-01 1.077e+00 3.753e+04 1.246e+05

28 33 1.134e+03 1.004e+03 1.347e+02 9.435e+02 2.181e+05 5.023e+05

29 34 4.719e+02 4.869e+02 9.746e+01 3.629e+01 4.985e+05 4.953e+05

30 36 6.982e+02 5.305e+02 3.055e-01 2.099e+01 7.463e+05 7.103e+05

31 37 3.933e+02 3.976e+02 5.860e+00 4.961e+00 6.563e+05 6.840e+05

32 39 4.573e+02 7.999e+02 4.797e-02 1.086e-02 6.968e+04 5.468e+04

33 41 1.124e+03 1.192e+03 4.162e+00 1.098e+01 2.229e+05 2.495e+05

34 42 1.346e+03 1.346e+03 1.909e+01 4.681e+01 1.572e+03 1.330e+02

35 43 3.374e+02 4.524e+02 6.497e-01 1.093e-02 6.213e+02 1.580e+02

36 45 5.238e+02 5.805e+02 1.383e-02 1.004e+01 4.910e+05 4.744e+05

37 46 7.882e+02 4.935e+02 1.173e+02 4.197e+01 1.122e+05 1.363e+05

38 47 5.722e+02 2.157e+02 5.668e-01 1.127e-01 2.821e+04 2.682e+04

39 52 4.344e+02 4.400e+02 1.914e+02 2.562e+02 8.934e+04 8.938e+04

40 54 7.614e+02 7.631e+02 1.087e+00 2.086e-01 4.399e+05 4.333e+05

41 55 1.695e+02 1.790e+02 5.330e+01 4.554e+01 1.551e+05 1.582e+05

42 60 8.358e+02 9.539e+02 2.007e+02 3.973e+01 7.358e+05 7.253e+05

43 65 7.356e+02 5.534e+02 1.554e+01 8.145e+02 2.099e+05 2.115e+05

44 75 7.133e+02 7.192e+02 1.694e+00 2.502e-01 1.109e+05 1.106e+05

45 84 6.321e+02 6.441e+02 1.137e+01 2.630e+02 7.623e+05 9.869e+02

average 8.093e+02 7.745e+02 8.314e+01 1.646e+02 3.085e+05 3.012e+05
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