
1 A Brief Review of Enzyme Kinetics

Enzymes are proteins which catalyze chemical reactions that usually, but not
always, take place within the cell. All proteins of cells, including enzymes,
are synthesized by ribosomes. Ribosomes synthesize both “inner-use” pro-
teins (those used within the cell and synthesized by ribosomes randomly
distributed in the cell) and “outer-use” proteins. These latter proteins are
synthesized by ribosomes which are attached to the membranes of the endo-
plasmic reticulum. This system of membranes collects these proteins which
are eventually exported from the cell.

Enzymes are of primary importance in metabolic pathways which would
otherwise require large amounts of energy (heat) to catalyze chains of chem-
ical reactions. Enzymes (which are known to be highly specific for both
substrate and reaction type) allow these reactions to take place at a rapid
rate at lower temperatures. Roughly speaking, an enzyme joins with its
substrate and lowers the energy requirements for activation of the reaction,
the reaction occurs, and the enzyme is then released unchanged to be used
again. This can be described in the so-called
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Figure 1:

“lock-and-key” theory which assumes that the structure (shapes) of the
enzyme and substrate molecules explain the specificity and inhibition fea-
tures observed in enzymatic reactions. The schematic in Figure 1 is some-
what misleading since enzyme molecules are usually quite large and exceed-
ingly complex in structure, and may possess a number of “active” or reac-
tion “sites”. For example, the substrate usually occupies only 10% of the
enzymes surface during the reaction. In addition, the reactions sometimes
requires accessory substances which may be lightly bound to the enzyme
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molecule during the reaction. Another important fact that will be recalled
in Chapter 3 is that enzymes are usually present at extremely low inter-
cellular concentrations (e.g. 10−7 molar) and only small quantities of the
enzyme are needed to catalyze the reaction. Finally, although we shall not
study the control of enzyme levels within the cell in these notes, we point
out that there is a highly complex homeostatic system involving synthesis
and inhibition which regulates these levels.

The kinetics (dynamics) involved in enzymatic reactions have tradition-
ally been modelled by ordinary differential equations. A very important
formulation much used (misused and abused) by modelers involves the ini-

tial reaction velocity expressions usually associated with the names Henri
[7], Michaelis-Menten [9], and Briggs-Haldane [3]. We develop briefly here
the theory underlying these expressions (studied in the first quarter of the
20th century and subsequent modifications.

We consider a single substrate plus enzyme to product reaction

E + S
k1




k−1

ES
k2⇀ E + P ,(1)

where it is assumed that an intermediate substrate-enzyme complex ES is
formed. Further, the reaction ES ⇀ E +P is assumed irreversible (in many
cases the back reaction rate is so small that it may be ignored). Additional
assumptions sometimes involved which are often not clearly stated are:

(i) only initial reaction rates are considered, the decline of reaction veloc-
ity due to decline in substrate concentration being ignored;

(ii) there is an excess of substrate S in a solution with the enzyme E;

(iii) the rate constant k2 is small compared to k−1 (k−1 � k2) and the
reaction E + S 
 ES reaches equilibrium very quickly and maintains
it throughout the overall reaction;

(iv) after a negligible time, the rate of formation and dissociation of the
complex ES becomes and remains very small compared to the rate of
changes for S and P .

Assumption (iii) is sometimes referred to as the “equilibrium ” assump-
tion while (iv) is often termed the “steady-state approximation” or “steady-
state” assumption.

We may, under assumption (i), write the nonlinear kinetic velocity ex-
pressions
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d[S]

dt
= −k1[E][S] + k−1ES

dES

dt
= −(k−1 + k2)ES + k1[E][S](2)

d[P ]

dt
= k2ES

where [E] is the concentration (in molars) of free enzyme, [S] the con-
centration of free substrate, and ES the concentration of the enzyme of
the enzyme-substrate complex. Also, we have the conservation law (att =
0, [P ] = 0)

ET = [E] + ES

ST = [S] + ES(3)

where ET , ST represent fixed concentration of the total (free and bound)
amounts of enzyme and substrate present, respectively. A fourth nonlinear
expression for d[E]

dt
follows immediately from the first conservation law and

the second equation in (2) and thus need not be written. The assumption (ii)
allows one to approximate, replacing the second equation in (3) by ST ≈ [S].

The Michaelis-Menten derivation else uses assumption (iii), which allows
to write

0 = −k1[E][S] + k−1ES

= −k1(ET − ES)[S] + k−1ES.

So that one finds

ES =
ET [S]

k−1

k1
+ [S]

.

One thus obtains the familiar expression for the initial velocity of product
formation

d[P ]

dt
= v =

k2ET [S]

KM + [S]
=

Vmax[S]

KM + [S]

or

v =
VmaxST

KM + ST

(4)
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where Vmax ≡ k2ET and KM ≡ k−1/k1.
In the Briggs-Haldane modification (in which one replaces assumption

(iii) by (iv)) one uses the steady-state approximation to write

dES

dt
= 0

or

0 = −(k−1 + k2)ES + k1[E][S],

which, upon use of the first equation in (3), yields

ES =
ET [S]

k−1+k2

k1
+ [S]

.(5)

The initial velocity expression is thus found to be

v =
VmaxST

KM + ST

(6)

where once again Vmax ≡ k2ET , but now the “Michaelis constant” KM

is given by

KM =
k−1 + k2

k1
.(7)

The initial velocity expression (4), (6) and its relation to transient terms
can also be discussed using more sophisticated arguments involving singu-
lar perturbations. We shall not present these here, but instead refer the
interested reader to [5, 8, 10, 11].

We note that at maximum velocity one has no free enzyme so that ET =
ES and hence v = k2ES = k2ET , thus justifying the definition Vmax ≡

k2ET made above. We also point out that assumption (iii) may be considered
a special case of (iv) and, as Briggs and Haldane have observed, one may in
fact have (iv) obtaining even though k−1 � k2 (this is a statement about
certain, perhaps unobservable, parameters characteristic of the particular
reaction under consideration) cannot be verified.

In the Michaelis-Menten derivation, the constant KM is an approximate
value of the dissociation constant for S + E 
 ES, while in the Briggs-
Haldane modification the Michaelis constant (being a function of the kinetic
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parameters k−1, k1, k2) has no simple theoretical significance. However, KM

does have practical significance in either situation. At v = 1
2Vmax the ex-

pressions (4), (6) yield ST = KM . Indeed, one interpretation (which is
sometimes used as a definition in the derivation of the velocity expressions)
of the Michaelis constant KM is that KM is that value of substrate concen-
tration ST which yields a reaction velocity one-half the maximum velocity
(i.e. v = 1

2Vmax).
In discussing the parameters KM , Vmax which are taken as character-

istic parameters for a specific reaction, biochemists often use the so-called
Lineweaver-Burk plot. In this graph one takes reciprocals in (6), obtaining
1
v

=
(

KM

Vmax

)

1
ST

+ 1
Vmax

, and then plots 1/v vs. 1/ST and abcissa intercept

−1/KM . Values for KM , Vmax are usually determined for a particular re-
action by measuring reaction velocities at a fixed enzyme concentration and
at various substrate concentrations, plotting the resulting Lineweaver-Burk
curve, and reading the intercept values.

1
v

1/Vmax

-1/KM
1/ST

slope=K /V
M max

Figure 2:

Numerical values for KM are found to range from 1 to 10−8M (molar).
Since in some cases (see assumption (iii)) the value of KM is an approxi-
mation to the extent of dissociation for the ES complex, biochemists often
equate “low KM” and “high degree of affinity of enzyme for substrate” when
discussing this characteristic parameter.

Another useful concept often found in the literature is that of “turnover
number”. If one calculates the hypothetical maximum conversion rate to be
expected per unit molar concentration of enzyme, one obtains the turnover
number TN for an enzyme. That is, TN = Vmax/ET and hence from
our above discussion we see that TN = k2, where the rate constant is now
expressed in terms of the maximum number of moles of substrate converted
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per minute per mole of enzyme. Numerical values of TN have been found
to range from 6 to 17 × 106.

For many investigations, the underlying assumptions detailed above in
deriving (4), (6) are much to stringent and there have thus been a number of
modifications proposed (see, for example,[2, 4, 6]). In particular, assumption
(ii) is often quite objectionable. In our work on enzyme cascades detailed
in substrates only roughly ten times those of the enzymes at each stage in
the cascade. Therefore velocity expressions derived under assumption (ii)
above are inadequate for use in such instances.

We further note that in many mathematical uses of the reaction veloc-
ity expressions one wishes to ignore the formation of the intermediate ES
complex and consider the reaction (1) as one simply of the form

ST
ET
−→ P.

Use of the expressions (4), (6) as velocity terms then involves either very
crude approximations or an implicit assumption of the form (ii), which is
some cases is undesirable.

For the modifications discusses here, we drop the assumption (ii), retain-
ing only (i) and (iv), which again imply dES/dt = 0, Defining KM as in (7),
we obtain

ES =
[E][S]

KM

=
(ET − ES)(ST − ES)

KM

.

This can be written

(ES)2 − (KM + ST + ET )ES + ET ST = 0(8)

which yields

ES =
1

2

{

(KM + ST + ET ) −
√

(KM + ST + ET )2 − 4ET ST

}

,(9)

where we have chosen the smaller root (minus sign) so that at ET = 0,
ST = 0 the expression yields ES = 0. Then we obtain

v =
Vmax
2ET

{

(KM + ST + ET ) −
√

(KM + ST + ET )2 − 4ET ST

}

.(10)
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On the other hand, if ES � KM + ET + ST (which is true if KM �

ET > ES), we may approximate the equation (8) by

−(kM + ST + ET )ES + ET ST = 0

or

ES =
ET ST

KM + ST + ET

.

With Vmax defined as above, this yields

v =
VmaxST

KM + ST + ET

.(11)

This expression will be used in several aspects of the investigation of
cascade models discussed in Chapter 3 below.

We return to the Briggs-Haldane formulation and indicate the changes
involved if a “competitive inhibitor” is added to the reaction represented
by equation (1). A competitive inhibitor is an inhibitor (chemical reagent
which inhibits the catalytic action of the enzyme) whose action can be re-
versed by increasing the concentration of the substrate. That is, one may
consider that the inhibitor and substrate “compete” for the “active site” of
the enzymes, with inhibition talking place if the inhibitor occupies the site.
To the equation (1) we must adjoin

E + I
k′

1




k′

−1

EI(12)

and the first equation in (3) must be replaced by

ET = [E] + ES + EI,(13)

where [I] is the concentration of the inhibitor and EI the concentration
of the enzyme-inhibitor complex. The kinetic equations (2) are still valid,
but must be supplemented with another equation

d

dt
EI = k′

1[E][I] − k′

−1EI.
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A steady-state assumption (iv) for (1) and an equilibrium assumption
for (12) yield the approximations

d

dt
ES = 0,

d

dt
EI = 0

from which it follows that

ES =
[E][S]

KM

, EI =
[E][I]

KI

(14)

where KI = k′

−1/k
′

1. Using (13),

ET = [E] + ES +
[E][I]

KI

= ES

(

1 +
[I]

KI

)

[E]

we obtain from the first equation in (14)

KMES = [S]

{

ET − ES

1 + [I]/KI

}

or

{

KM +
KM [I]

KI

+ [S]

}

ES = ET [S].

We thus find

ES =
ET [S]

KM + KM [I]
KI

+ [S]

and hence

v =
Vmax[S]

KM + KM [I]
KI

+ [S]
.(15)

If we again approximate by ST ≈ [S], we finally have
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v =
VmaxST

KM

(

1 + [I]
KI

)

+ ST

(16)

In a similar manner, one may derive modified velocity expressions under
relaxes assumptions (see (8)-(11) above) in the case of the presence of a
competitive inhibitor. For example, if one assumes only (i) and (iv) and
ignores terms (ES)2 as in the derivation of the (1) above, one obtains

ES =
ET ST

KM

(

1 + [I]
KI

)

+ ST + ET

which then implies

v =
VmaxST

KM

(

1 + [I]
KI

)

+ ST + ET

(17)

Velocity expressions for reactions in the presence of other types of in-
hibitors are also easily derived. For a so-called “noncompetitive inhibitor” I
(the inhibitor binds to both free enzyme and the enzyme-substrate complex)
one must add to equations (1) and (12) the equation

ES + I
k̃1




k̃−1

IES.(18)

The conservation laws become

ET = [E] + ES + EI + IES

ST = [S] + ES + IES.

Making a steady-state assumption (iv) for (1) and equilibrium assump-
tion for (12) and (18), one can carry out arguments similar to those already
detailed to obtain a Briggs-Haldane-type expression (ST ≈ [S])

v =
VmaxST

KM

(

1 + [I]
KiE

)

+ ST

(

1 + [I]
KiC

)(19)
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where KM is again given by (7), KiE = k′

−1/k
′

1, KiC = k̃−1/k̃1.
If one doesn’t assume excessive substrate (i.e. uses the conservation law

instead of ST ≈ [S]), the modified velocity expression obtained is

v =
VmaxST

KM

(

1 + [I]
KiE

)

+ (ST + ET )
(

1 + [I]
KiC

) .(20)

In the case of an “uncompetitive inhibitor” I (the inhibitor binds only
to the enzyme-substrate complex, one uses equations (1) and (18) with the
conservation laws

ET = [E] + ES + IES

ST = [S] + ES + IES.

The usual arguments (steady-state assumption on (1), equilibrium as-
sumption on (18), and ST ≈ [S]) yield a Briggs-Haldane-type velocity ex-
pression

v =
VmaxST

KM + ST

(

1 + [I]
KI

)(21)

with KM as in (7) and KI ≡ k̃−1/k̃1. The velocity expression under the
modified assumptions becomes

v =
VmaxST

KM + (ST + ET )
(

1 + [I]
KI

) .(22)

In addition to inhibitors, one may also have “activators” which combine
with the enzyme to promote the reaction. Suppose, for example, that one
has a activator A which combines with the enzyme E to form an enzyme-
activator complex EA which may also act as an “enzyme” for the substrate
S. Then the stoichiometric equations are (1) plus

E + A
k′

1




k′

−1

EA(23)

EA + S
k̃1




k̃−1

EAS
k̃2⇀ P + EA(24)

10



and the velocity of product formation is

v =
d[P ]

dt
= k2ES + k̃2EAS.(25)

Under the steady-state assumption for (1) and (24), and equilibrium
assumption for (23), and the excessive substrate assumption (ST ≈ [S]),
one obtains the Briggs-Haldane-type velocity expression

v =
k2ST ET

(

1 + [A]
K′

eq

)

KM +

(

1 + [A]KM

K′

eqK̃M

)

ST

(26)

+
k̃2[A]ST ET

(

[A] + K ′

eq

)

K̃M +
(

[A] + K ′

eq
K̃M

KM

)

ST

where KM ≡
k−1+k2

k1
, K̃M ≡

k′

−1

k′

1

, and [A] is the concentration of free ac-

tivator. Here k2, k̃2 can be interpreted as the turnover numbers TNE , TNEA

for the enzyme and enzyme-activator complex respectively.
If one does not make the excessive substrate assumption but uses instead

the conservation law

ST = [S] + ES + EAS,

the modified velocity term obtained (again ignoring certain higher-order
terms) analogous to (11) is

v =
k2ST ET

(

1 + [A]
K′

eq

)

KM +

(

1 + [A]KM

K′

eqK̃M

)

(ST + ET )

(27)

+
k̃2[A]ST ET

(

[A] + K ′

eq

)

K̃M +
(

[A] + K ′

eq
K̃M

KM

)

(ST + ET )

If one makes the assumption of excessive activator (often useful in utiliz-
ing the expressions (26), (27) in modelling) so that AT ≈ [A], where AT =
concentration of total (free and bound) activator present, then of course the
velocity terms (26), (27) are the same except that [A] is replaced by AT in
these expressions.
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In the next two chapters we shall use the velocity expressions developed
above to discuss two areas of modelling where optimality ideas have been
fruitfully employed.
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