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Principle of Competitive Exclusion

« When two or more species compete for the
same basic resources, the “strongest” survives;
the weaker species is driven to extinction.
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* Biologist G. F. Gause (1932, 1934) illustrates
various competitive outcomes when the
competing species are yeasts, e.g.,
Saccharomyces cervisiae and
Schizosaccharomyces kephir.



Equilibrium Analysis

Recall for a differential equation of the form

x'= f(x), solutions x that satisfy f(x)=0

are called equilibrium points or steady state
solutions.

f'(x) <0 implies x is locally stable.
F1(x)>0 implies X is unstable.
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Equilibrium Analysis of a System

Given a system x'= f(x,y) and y'=g(x,y)
and an equilibrium (x,y), the Jacobian

8.(x,y) &,(x,y)| determine stability.

J(J_CJ):{

- v

If the eigenvalues satisfy ReA,ReA, <0

Or alternatively, if Det(J) > 0 and
Tr(J) <0, then (x, y)

Then the equilibrium point is locally stable.



Review

» Recall the classical logistic model,
X
xX=rx{1——
K

« Equilibria for this model are:
x=0 and x=K

' s~

- Furthermore, stability analysis gives:

X=0 unstable, ¥=K globally stable

= 4



Logistic Contin
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Lotka-Volterra Model for
2-Species: x; and X,

dx; = rx, — X — PuX,
dt K,

dx, & ( T A ﬁzlxlj -
= X, :

dt

where ....




Lotka-Volterra Model for
2-Species: x; and X,

7;- ’ Ki 7 lBij > O i
. is the intrinsic growth rate (births — deaths)
of species |

K, is the carrying capacity of species i

:Bi' IS the competition coefficient of species i

=




Lotka-Volterra Model for
2-Species: x; and x,

 The per capita growth rate

1 dx,
= f.(x,x,) Islinear.
x;, dt Jilh: %)

« Also af’
ox .

J

L

<O fori# j therefore this is a competition model.

* Equilibria are:

Kl _1812K2 Kz _1521K1J
0,0) (K,,0) (0,K,) , ;.
( 1= 18121621 les 1512:621 .
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Lotka-Volterra Model for
2-Species: x; and X,

For species x,, isoclines are
x,=0 and K, =x+05,%,
For species x,, isoclines are
x,=0 and K,=x,+0,%

There are four cases to consider .
depending on how isoclines intersect in the
1stquadrant...



Lotka-Volterra Model for
2-Species: x; and X,

Case 1 — Positive solutions approach equilibrium (K,,0);
species 1 always dominates (competitive exclusion).
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Lotka-Volterra Model for
2-Species: x; and X,

Case 2 — Positive solutions approach equilibrium (0, K.);
species 2 always dominates (competitive exclusion).

—
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Lotka-Volterra Model for
2-Species: x; and X,

Case 3 — Positive solutions approach either equilibrium
(K,0) or (0,K,). The outcome depends on initial conditions,
referred to as the Founder Effect. The species first to
establish itself (the founder) has an advantage and will be

the superior competitor.

r

Case 3




Lotka-Volterra Model for
2-Species: x; and X,
Case 4 — Positive solutions approach the equilibrium

[Kl_ﬁlzKZ KZ_IBZlKlj
1_1812:321 : 1_1812:321
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Review of Classical Lotka-
Volterra Predator-Prey Model

dX (1) dyY ()

=X()la-bY ()]

=Y(@®)[—c+dX(1)]

X=X’ YW0)=Y°

-~

-

e
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X(t) and Y(t) denote prey population size and '
predator population size, respectively at t > 0.

For prey: a and b are fixed growth and
mortality rates, respectively.

For predator: d and c are fixed growth and
mortality rates, respectively.



Review of Classical Lotka-
Volterra Predator-Prey Model

o6
mgm L] = 0,0, _,_
Equilibria: (0.0) (d bj

It is well known that the solution is a closed curve in A
. : . D -
satisfying INtR"+ : i

dX +bY —cln X —alnY =k, .

where K is a constant depending upon initial conditions

and the point (2%} IS Interior to the curve.

dx& X
dY  Y(—ctdnj

Hint:  Solve

~am




Review of Classical Lotka-
Volterra Predator-Prey Mod

— Predator
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Review of Classical Lotka-
Volterra Predator-Prey Mode




Generalized Lotka-Volterra
Predator-Prey Model

Assume: Prey and predator populations are divided into
M and N subpopulations respectively. i

« Growth for prey is subpopulation specific, while
mortality is driven by interaction with entire predator
subpopulation.

« Growth for predator is driven by interaction with entire
prey population; mortality is subpopulation specific.

Let x;(t) and y;(t) be the sizes of the i " prey subpopulation and
the j I predator subpopulation at time t> 0, where i=1, ... ,M
and j=1s ... N

Let x(t) = (x1(t), ..., xpg(t)) and y(t) = (y4(1), .. , ypn()-



Generalized Lotka-Volterra
Predator-Prey Model

e be the total prey
Let i
X(1)= ;xl. () population size.

N
Lt Y=Y y,@) be the total predator
= population size.

dx. (1) i

t =x,()[a, —bY (1)], i=1...M; x(0)=(x(0),...,x,(0))

dy,(t)

=y, +d X0 j=1e Ny y(0)=(5,(0)ses vy (0)



Dominance and Extinction of
Non-dominant Subpopulation

Suppose subpopulations are ordered such that:

4% k=200 - |
b, b pr
4 > uJ: k=2

G g

Xy and y4 are dominant in the sense that they
have the highest growth to mortality ratios

within the prey and predator classes,
respectively.



Dominance and Extinction of
Non-dominant Subpopulation

x.(t)—>0 as t—>oo and  yiiy—USSGEENE

For k #1
* X, and y, remain bounded and strictly positive.

This is why: ¢

Forany t >0, define H(t) =T'(t) + At) + () + ¥ (¢)

where d, c, . e dx, (1)
F(l‘)=;[xl(t)—d——d—ln( j]

| 1 1 ¢

_ﬂ 4 by, (1)
A1) = , [yl(t) i ln( al D

1
M N
(1) = Z%xi t) W(r) = ZZ—lx,- (1)
1=

i i

and observe that H e C'([0,); R,) .




Dominance and Extinction of
Non-dominant Subpopulation

The total derivative of H along any solution
of the system is negative. That is,

H'(t):ig—gﬂ+...+ oH g +8H 2l +...+ oblida <
ox, dt ox,, dfyd oy 4 dy, dt

for all t > 0. Hence, the auxiliary function H
IS bounded above on [0, «).



Dominance and Extinction of
Non-dominant Subpopulation

x,t)—=0 as t—>o0o and y (1)—>0 as t—>o

We begin by considering the prey case. Use the ratio

to establish a comparison between x1(t)

i and x(t) and the use the fact that x 4(¢) is
X2 (t) bounded on [0, «), along with the
r(l‘ ) = kl comparison result, to conclude that

7 X (t) > 0ast> = If kisin{2,..., M},
xll(t) thken...

- - e



Dominance and Extinction of
Non-dominant Subpopulation




Dominance and Extinction of
Non-dominant Subpopulation

% Gt

By the dominance of x; we have =~~~ %
where A, is a positive constant. ©

So we have a first order differential equation
of the form r'(t) =—-A,r(¢t), whose

solutionis r(¢) = r(0)e ™™ . In terms of x, we
have ! o

xlfk (t) . xlfk (O) e—/’ikt




Dominance and Extinction of
Non-dominant Subpopulation

Solving for x, , we obtain % () =| = Fe T ()

Since x4(1) is bounded on [0, »), there exists a

positive constant A such that x, (r) < Ae ™,

fort>0.So x, (1) >0 as t— oo, for k#1.

An analogous argument for the predator case
yields y, (1) >0 as t—oo, for k#1.

e



Dominance and Extinction of
Non-dominant Subpopulation

NUMERICAL RESULTS

 Given ten predator and prey subpopulations:

For the dominant prey subpopulation,
a;=1,b,=08

For the dominant predator subpopulation,
C.,=06, a =2

- Each x(0), /1= 1,...,Mand yj(O),j= 1,...,Nis
set equal to 0.18.

' v



Dominance and Extinction of
Non-dominant Subpopulation

- For non-dominant subpopulations ...

a, =a,  —0.020(n—-1)
b,=b _, +0.016(n-1)
c,=c,, +0.012(n-1)
d =d _,—0.024(n-1)



Dominance and Extinction of
Non-dominant Subpopulation
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Dominance and Extinction of
Non-dominant Subpopulation

Figure 1 presents the predator population
vS. prey population for tin [0,250].

 When t = 0, the total population trajectory
starts at the point (X(0), Y(0)) = (1, 1.6) and
moves in a counterclockwise fashion.

 When t =0, the dominant subpopulations
trajectory starts at (x,(0), y,(0)) = (0.1, 0.1)
and moves in a counterclockwise fashion

as it approaches total population trajectory.

-



Dominance and Extinction of
Non-dominant Subpopulation

 Since every prey subpopulation other than
the dominant one approaches zero as t — «
the dominant prey subpopulation must
approach the total prey population as f — o

* The predatory case is strictly analogous.
So, the trajectories must approach one
another.

e




Dominance and Extinction of
Non-dominant Subpopulation

s
i \/M/\/\AW
0 ! |
0 50 100 150
Time

Figure 2: Population differences vs. time



Dominance and Extinction of
Non-dominant Subpopulation

Let a=a, b=b,c=c¢ ,d=d, inthe
classical predator-prey system with initial
conditions

(X(0),Y(0) = (x,(250), y,(250))

After enough time has passed, the

trajectory for the dominant predator-prey

pair from the generalized system closely
approximates the solution curve of a -
classical predator-prey system with this

initial condition.



Conclusion

* As seen from both theoretical and numerical
results, all non-dominant subpopulations in the
generalized predator-prey model are forced to
extinction as f —o° due to closed reproduction.

Closed reproduction/Selection - individuals with
the highest growth to mortality ratio only produce
more of themselves.

* This conclusion may change with an open
reproduction.




Conclusion

« Open reproduction/Mutation - individuals in one
subpopulation have a positive probability of producing
individuals that belong to different subpopulations.

Hence, survival of the dominant species implies survival of
some of the others. In this case, surviving subpopulatlons |
have an oscillatory behavior. |







Selection Models

Consider a competition among N populations where the dynamics of each
population is expressed in the following form:

N
x.'=x(a,—b,X) where X:in %>%
i=l1 1 '

l

=

4§ le B in(ai —b,X)
<> x (a—bX)
= X (a—bX)

X is bounded.




Selection Models

As the asymptotic behavior shows, the population with the parameter

(a4,b4) is the fittest population. That is, this is the only population that
persists and the rest go to extinction.

d _ g .
Consider the ratio xif . Thus d—(xf':x1 N=E xSl B
o
=
If we let x;x; ° = 1 thenweariveal .



Selection Models

Letting le, and 5=l ,
D, b, ‘
dA a. a .
Ml ol T g
dt (b,. b, ) -
| R B
b, b,
<
Since % > G , we have ¢ < 0. Thus, Y approaches zero as
il o

[ — o0 . Because the denominator is bounded, the numerator
must tend to zero at infinity. Thus, all non-dominant subpopulations
die. ...




Selection Models

Now we show that the dominant subpopulation x4 survives:

Recall X,'=x,(a,—bx —hX) X=>x,

=
and consider y'= y(a1 —bl)’)
* Notice x' < X, (Cll _b1x1)

Hence x(t) < y(t) by companson



Selection Models

Next, consider jt ln[ 21 ] = s DI (a,—bx, — b1)2)_ (a, —bly)

1 1
Making the substitution E=—, and O= b_ we arrive at
1

b,
b(y—x)= bX+ ( )
y

-



Selection Models

Integrating the equation from t to f we arrive at:

j (y(2)—x,(7) dr_j X(t)dr+ j [ — n(xljjdf

i
b1 y :
1 X s o
<—In| 2 |+ (e%dr)=m

Since 0< j(y —x)dt<M and (y'—X,') are bounded,

t

+[ X(@dr i

.

Wi

we have y — X, — O as t—> oo .Sincey approaches s b
1

in the long term, so too does x;,










Competitive Exclusion for an epidemic model

The model considered is of the SIR type, in that the host population consists of
susceptible, S, individuals infected with strains 1 through n, I, , j=1,2. ... , nand
immune or removed individuals, R. In addition, it is assumed that there is mass
action horizontal transmission:

S S(f(N)—Zn: ﬁjlj]+zn: bl + bR
P,y =1,(f(N)=b+ 825, — y, —ii IS -

R()=R(F(NY=b)+ Y 7,1,

N:S+R+anlj

=

N ()= N (N)= a1,

b is a birth rate, f(N) is the per capita growth rate, and b-f(N) is the natural
death rate. B8, denotes the transmission rate for the ith strain and 7 is
the recovery rate from infection with strain j. All parameters are positive.



Competitive Exclusion for an epidemic model

Competitive Exclusion

Let ¢,=b.+y.+u; > f(0)

Then the basic reproduction number for strain j is given by:

RO,]. :&K, =Y

Ji

We define
K
BO,j —_ IB] ’
Cj e f(O)

and assume for the rest of this section that for each j=2,...,n, one of the
following conditions holds:

(3) Ry, >Ry, and c,>¢
(4) B,,>B,; and p,>p

The following stronger conditions imply (3) or (4):
Ry, >R,; and B, > B,

J =12 50

.
/1

or




Competitive Exclusion for an epidemic model

S()=S forte[0,)

We show that all the strains, except possibly one, die out.

oFor =2 = ki
(1) =0. |

1

lim,_ I,

I
e

*First assume that the conditions in (3) hold for a fixed j and define e = d
/i,

L1 (ran+B,S—c I —— 17 (F )+ BS—e I
¢

d ¢; 1
—I ()=

1
=Cir1(t)(f(N)+ﬂjS —cj)—-;—Fl(t)(f(NHﬁlS o |

J




Competitive Exclusion for an epidemic model

dt C; cl @ 15
Pi_B |
ZF(I)(CJ CIJ

Expressed in terms of logarithms,

dinL;(t) _ 1[5, ﬁ
it *2

c. @
Thus

-

p

J

I (1) srl(o)ei(f_f%]—; 1 el e 131 (OO (fj ﬂj

c. a

Since 1, is bounded, and (ﬁ_ﬁJ <o wehave lim__I.(7)=0.



Competitive Exclusion for an epidemic model

7
Now define T'(t)=——
IF
il—‘z(t):rwz(t) f(N)_f(N)+ Cl_Cj S
dt B B BB

1 G S o

<@ fO| =———= |+| =>———= , .

(f (ﬁ ﬂll [ﬁl 3 D F -

B, g, ) .

Arguing as before we get lim,__I,(1)=0. oo %



Competitive Exclusion for an Epidemic Model

Assume that

R,, >1 then limint,  I,()>0

Assume that R, <1

then



Competitive Exclusion for an Epidemic Model

Coexistence Case

Consider the following case with two strains (n=2). Let f(/N)= r(l ——]-v——j
where K = 100 and the intrinsic growth rate is r = 4. K
Birth rate, b; = 6 and the transmission rates and recovery rates for the

two strains are:

G=2,0,=1 and y =1=y,

Suppose strain 1 with the largest transmission rate also has the highest
virulence, u, =10, u, =3 . Clearly , in the case the reproduction .
number Ry 4 = 11.765 > 10 = Ry 5. But, Gy =17 > 10 = C,. However,

By ¢ =15. 385 < 16.667 = B ». But [, > [, hence, nelther condition

(3) nor (4) are satisfied. Slmple computations show that a positive

steady state exists for this case and is given by

S=7,1=4929,1,=8.571and R=4.5

|

.

i




Competitive Exclusion for an Epidemic Model

00 1500 2000 2500 3000 3500 0 5 10 ' 15 20 25

Fig. 1. Competitive exclusion when conditions (3) and (4) are not satisfied. Fig. 2. Coexistence of the strains [,(¢) and L, (¢).

Local stability analysis proves that this positive steady state is
locally asymptotically stable. In particular, the Jacobian matrix has
eigen values given by

A, =-8.657+6.833i, A, =—8.657—6.833i, 4, =—1.899, 4, =—0.216

Our numerical results indicate that this equiliorium is indeed globally
asymptotically stable.
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Competitive Exclusion and Coexistence for a
Quasilinear Size-Structured Population Model

Consider a species with n competing ecotypes.

Fori=1,2,...,n, we describe the dynamics of the subpopulation
consisting of individuals of the t" ecotype with the following individual
size-structured model of the McKendrick-von Foerster type.

W), +g.(PO)w,) . +m (P, =0 0<x<oo, >0

§
AL |

& (PO, 0.0 = [7,8,(PO)u,(x.0)dx >0

J=1 o
u(x,0)=u,(x) 0Sx<oo

where u,(x,t) is the density of individuals of the th ecotype having size x
at time t




Competitive Exclusion and Coexistence for a
Quasilinear Size-Structured Population Model

R= Zjul (x,t)dx is the total number of
i=l g
individuals in the population at time f. For an individual in the e
subpopulation ...

W is the i growth rate
m,: isthe th mortality rate

p.. isthe th reproduction rate

0<y,, <l: probability that an individual of the jth ecotype
’ will reproduce an individual of the it ecotype.

Clearly, Z;/l] Z}/”—l 1<i, j=m




Competitive Exclusion and Coexistence for a
Quasilinear Size-Structured Population Model

We focus on the asymptotic behavior of the population in two cases:

1. Closed reproduction: offspring always belong to same ecotype as
the parent.

Y., and 71.,].:0 for =4

2. Open reproduction: individuals of ecotype i may reproduce individuals
of ecotype J.

2
-
i

By integration of the PDE from 0 to infinity with respect to t and by
making the following substitutions,

P() = Z I u,(x,t)dx and P(t)= jui (x,1)dx
i=1 ( 0
we arrive at a system of n ODEs ...

S g




Competitive Exclusion and Coexistence for a
Quasilinear Size-Structured Population Model

P'()=) (7,8, (P)P)—m(P)P, S P(O)= 0r =l
=l
Asymptotic Behavior
In order to study the asymptotic behavior of the population, we
consider the above system of coupled ordinary differential

7
-
equations. i

Assumptions for )< P < >

[3.(P) is non-increasing

m, (P) is increasing

There exists P suchthat, S.(2)=ni. (B ), i 28

A




Competitive Exclusion and Coexistence for a
Quasilinear Size-Structured Population Model

We first show that population P(t) is uniformly
bounded.

o > %

let P=max,__ P and P=mm, _—F«
ForanyO<é&<1 ,define 1. =|P(1-¢),P(+¢)] .
Then there exists a finite time 7, such that Pe I,
for t 2 tz.

Closed Reproduction Case

Recall that in the closed reproduction case,
Y., and Y. =0~ for 11

Therefore the system of ODEs reduces to the following,
P'=(B8(P)-m(P))P. P@0)>0, i=12,..n.



Competitive Exclusion and Coexistence for a
Quasilinear Size-Structured Population Model

Under the assumption,

B(P) _ B(P)
m(P)  m.(P)

r

i=2,.,n; forany Pe I, = [B,ﬁ]

Then the solution of P'= (,Bl.(P) —ml.(P))Pl. P0)>0, i=12,...,n.

satisfies that for each i=2,....,n ; Pl(t) S0 as &2

-

To show this, it suffices to show that fori=2,...,n,
O;

— 0 as ¥ — o for some positive constant O,
1

> - e



Competitive Exclusion and Coexistence for a
Quasilinear Size-Structured Population Model

What's left is to show that P(1) - P* as ¢ — oo

This can be shown by considering the following initial value problem:

{y': (ﬂl(Y)_m1()’))y’ t: <t <oo,
y(t,) = P(t,)
Clearly, y(t) = Pl* as [ — oo . Furthermore, since

P'<(B(P)—m,(P))P, by comparison y(r)= P(t)

-
-
P

forall t > t: . On the other hand we have:

iln(i]=£'__ (B.(P)=m,(P))—(B,(»)=m,())
dr \ Y R

= (8. -m @R -»)+(8&)- ml@‘)) P,
Where 5 is between Pand P; and 5 is between Psand y



Competitive Exclusion and Coexistence for a
Quasilinear Size-Structured Population Model

Rearranging the terms, we arrive at

1(d, P By NG

Integrating from space to t, we get

t

[Gep-Pep)an <

*
té‘

—{ [P (’)]+Zj [, (&) B <5>]P(n>th<M<oo

}
I \ L

C y() ]2t

where M is independent of t.

>4 -




Competitive Exclusion and Coexistence for a
Quasilinear Size-Structured Population Model

Open Reproduction Case

In this case, we assume that reproduction is open under subpopulations,
that is, individuals in the th subpopulation may also reproduce individuals
in the " population. If the graph associated with the matrix [71',]'] IS
strongly connected (the matrix is irreducible), then all ecotypes of

the population coexist. For convenience, we assume the following:

Hypothesis 1:

%.>0, 7,.,>0,.7 v.,,>0and v = O afieiii

Y.; >0, =y

If Hypothesis1 holds, then there exists a positive constant ¢ such that

lim 1nte . P()2c o for =i i



Competitive Exclusion and Coexistence for a
Quasilinear Size-Structured Population Model

NUMERICAL RESULTS

In the closed reproduction case, it is clear that -
subpopulations with smaller ratios £-: “; ) will go to d
extinction. i ‘

This leads to the question:

What happens if two subpopulations have the same
largest ratio?




Competitive Exclusion and Coexistence for a
Quasilinear Size-Structured Population Model

B(P) _ (P
m,(P) m,(P)

subpopulations with the largest ratio



Competitive Exclusion and Coexistence for a
Quasilinear Size-Structured Population Model

node in the graph associated with the

is not connected to any other node, |
/ - /



