Mathematical and Statistical Modeling in Biology

Competitive Exclusion, Coexistence, Estimation, and Control

Azmy S. Ackleh

University of Louisiana at Lafayette

Principle of Competitive Exclusion

• When two or more species compete for the same basic resources, the "strongest" survives; the weaker species is driven to extinction.

• Biologist G. F. Gause (1932, 1934) illustrates various competitive outcomes when the competing species are yeasts, e.g., *Saccharomyces cervisiae* and *Schizosaccharomyces kephir*.

Equilibrium Analysis

Recall for a differential equation of the form x' = f(x), solutions \overline{x} that satisfy $f(\overline{x}) = 0$ are called equilibrium points or steady state solutions.

 $f'(\bar{x}) < 0$ implies \bar{x} is locally stable. $f'(\bar{x}) > 0$ implies \bar{x} is unstable.

Equilibrium Analysis of a System

Given a system x' = f(x, y) and y' = g(x, y)and an equilibrium $(\overline{x}, \overline{y})$, the Jacobian $J(\overline{x}, \overline{y}) = \begin{bmatrix} f_x(\overline{x}, \overline{y}) & f_y(\overline{x}, \overline{y}) \\ g_x(\overline{x}, \overline{y}) & g_y(\overline{x}, \overline{y}) \end{bmatrix}$ is used to determine stability.

If the eigenvalues satisfy $\operatorname{Re} \lambda_1, \operatorname{Re} \lambda_2 < 0$ Or alternatively, if $\operatorname{Det}(J) > 0$ and $\operatorname{Tr}(J) < 0$, then $(\overline{x}, \overline{y})$ Then the equilibrium point is locally stable.

Review

• Recall the classical logistic model,

 $x' = rx\left(1 - \frac{x}{K}\right)$

• Equilibria for this model are:

 $\overline{x} = 0$ and $\overline{x} = K$

• Furthermore, stability analysis gives: $\overline{x} = 0$ unstable, $\overline{x} = K$ globally stable

Logistic Continued

where

$r_i, K_i, \beta_{ij} > 0$

 K_{i}

- \mathcal{V}_i is the intrinsic growth rate (births deaths) of species *i*
- K_i is the carrying capacity of species *i*
- $\underline{\beta}_{ij}$ is the competition coefficient of species *i*

• The per capita growth rate $\frac{1}{x_i} \frac{dx_i}{dt} = f_i(x_1, x_2) \text{ is linear.}$

• Also $\frac{\partial f_i}{\partial x_j} < 0$ for $i \neq j$ therefore this is a *competition* model.

• Equilibria are: (0,0) $(K_1,0)$ $(0,K_2)$ $\left(\frac{K_1 - \beta_{12}K_2}{1 - \beta_{12}\beta_{21}}, \frac{K_2 - \beta_{21}K_1}{1 - \beta_{12}\beta_{21}}\right)$

For species x_1 , isoclines are $x_1 = 0$ and $K_1 = x_1 + \beta_{12}x_2$ For species x_2 , isoclines are $x_2 = 0$ and $K_2 = x_2 + \beta_{21}x_1$

There are four cases to consider depending on how isoclines intersect in the 1st quadrant ...

Case 1 – Positive solutions approach equilibrium $(K_1, 0)$; species 1 always dominates (competitive exclusion).

Case 2 – Positive solutions approach equilibrium $(0, K_2)$; species 2 always dominates (competitive exclusion).

Case 3 – Positive solutions approach either equilibrium $(K_1,0)$ or $(0,K_2)$. The outcome depends on initial conditions, referred to as the *Founder Effect*. The species first to establish itself (the founder) has an advantage and will be the superior competitor.

Case 4 – Positive solutions approach the equilibrium $\left(\frac{K_1 - \beta_{12}K_2}{1 - \beta_{12}\beta_{21}}, \frac{K_2 - \beta_{21}K_1}{1 - \beta_{12}\beta_{21}}\right)$

 K_2 K_2 K_1 K_1 K_1

Lotka-Volterra Predator-Prey Models

 $\frac{dX(t)}{dt} = X(t)[a - bY(t)] \quad \frac{dY(t)}{dt} = Y(t)[-c + dX(t)]$ $X(0) = X^{0}, \quad Y(0) = Y^{0}$

X(t) and *Y(t)* denote prey population size and predator population size, respectively at $t \ge 0$.

For **prey**: *a* and *b* are fixed growth and mortality rates, respectively.

For **predator**: *d* and *c* are fixed growth and mortality rates, respectively.

Equilibria: (0,0), $\left(\frac{c}{d}, \frac{a}{b}\right)$

It is well known that the solution is a closed curve in satisfying $int R^{2}_{+}$

 $dX + bY - c \ln X - a \ln Y = k,$ where k is a constant depending upon initial conditions and the point $\left(\frac{c}{d}, \frac{a}{b}\right)$ is interior to the curve.

Hint: Solve $\frac{dX}{dY} = \frac{X(a-bY)}{Y(-c+dX)}$

Generalized Lotka-Volterra Predator-Prey Model

<u>Assume</u>: Prey and predator populations are divided into *M* and *N* subpopulations respectively.

• *Growth for prey* is subpopulation specific, while *mortality* is driven by interaction with entire predator subpopulation.

• Growth for predator is driven by interaction with entire prey population; mortality is subpopulation specific.

Let $x_j(t)$ and $y_j(t)$ be the sizes of the *i*th prey subpopulation and the *j*th predator subpopulation at time $t \ge 0$, where i = 1, ..., M and j = 1, ..., N.

Let $x(t) = (x_1(t), \dots, x_M(t))$ and $y(t) = (y_1(t), \dots, y_N(t))$.

Generalized Lotka-Volterra Predator-Prey Model

Let
$$X(t) = \sum_{i=1}^{M} x_i(t)$$

Let $Y(t) = \sum_{j=1}^{N} y_j(t)$

be the total prey population size.

be the total predator population size.

 $\frac{dx_i(t)}{dt} = x_i(t)[a_i - b_i Y(t)], \qquad i = 1, ..., M; \quad x(0) = (x_1(0), ..., x_M(0))$ $\frac{dy_j(t)}{dt} = y_j(t)[-c_j + d_j X(t)], \qquad j = 1, ..., N; \quad y(0) = (y_1(0), ..., y_N(0))$

Suppose subpopulations are ordered such that:

$$\frac{a_{1}}{b_{1}} > \frac{a_{k}}{b_{k}} , k = 2,..., M$$
$$\frac{d_{1}}{c_{1}} > \frac{d_{k}}{c_{k}} , k = 2,..., N$$

 x_1 and y_1 are **dominant** in the sense that they have the highest growth to mortality ratios within the prey and predator classes, respectively.

 $x_k(t) \rightarrow 0$ as $t \rightarrow \infty$ and $y_k(t) \rightarrow 0$ as $t \rightarrow \infty$ For $k \neq 1$

• x_1 and y_1 remain bounded and strictly positive.

This is why:

For any $t \ge 0$, define $H(t) = \Gamma(t) + \Lambda(t) + \Phi(t) + \Psi(t)$

where

$$\Gamma(t) = \frac{d_1}{b_1} \left(x_1(t) - \frac{c_1}{d_1} - \frac{c_1}{d_1} \ln\left(\frac{d_1 x_1(t)}{c_1}\right) \right)$$

$$\Lambda(t) = \frac{d_1}{b_1} \left(y_1(t) - \frac{a_1}{b_1} - \frac{a_1}{b_1} \ln \left(\frac{b_1 y_1(t)}{a_1} \right) \right)$$
$$\Phi(t) = \sum_{i=2}^{M} \frac{d_1}{b_i} x_i(t) \qquad \Psi(t) = \sum_{j=2}^{N} \frac{c_1}{c_j} x_j(t)$$

and observe that $H \in C^1([0,\infty); R_+)$.

The total derivative of *H* along any solution of the system is negative. That is,

$$H'(t) = \frac{\partial H}{\partial x_1} \frac{dx_1}{dt} + \dots + \frac{\partial H}{\partial x_M} \frac{dx_M}{dt} + \frac{\partial H}{\partial y_1} \frac{dy_1}{dt} + \dots + \frac{\partial H}{\partial y_N} \frac{dy_N}{dt} < 0$$

for all t \geq 0. Hence, the auxiliary function *H* is bounded above on $[0, \infty)$.

$$x_k(t) \to 0$$
 as $t \to \infty$ and $y_k(t) \to 0$ as $t \to \infty$

We begin by considering the prey case. Use the ratio

 $r(t) = \frac{x_k^{\frac{1}{b_k}}(t)}{x_1^{\frac{1}{b_1}}(t)}$

to establish a comparison between $x_1(t)$ and $x_k(t)$ and the use the fact that $x_1(t)$ is bounded on $[0, \infty)$, along with the comparison result, to conclude that $x_k(t) \rightarrow 0$ as $t \rightarrow \infty$. If k is in $\{2, ..., M\}$, then ...

By the dominance of x_1 , we have $\frac{a_k}{b_k} - \frac{a_1}{b_1} = -\lambda_k$, where λ_k is a positive constant.

So we have a first order differential equation of the form $r'(t) = -\lambda_k r(t)$, whose solution is $r(t) = r(0)e^{-\lambda_k t}$. In terms of x, we have

$$\frac{x_{k}^{\overline{b_{k}}}(t)}{x_{1}^{\frac{1}{b_{1}}}(t)} = \left[\frac{x_{k}^{\overline{b_{k}}}(0)}{\frac{1}{x_{1}^{\frac{1}{b_{1}}}(0)}}\right]e^{-\lambda_{k}}$$

Solving for x_k , we obtain $x_k(t) = \begin{bmatrix} x_k(0) \\ \frac{b_k}{k} \\ x_1^{b_1}(0) \end{bmatrix} e^{-\lambda_k b_k t} x_1^{\frac{b_k}{b_1}}(t)$. Since $x_1(t)$ is bounded on $[0, \infty)$, there exists a positive constant A such that $x_k(t) \le A e^{-\lambda_k b_k t}$, for $t \ge 0$. So $x_k(t) \to 0$ as $t \to \infty$, for $k \ne 1$.

An analogous argument for the predator case yields $y_k(t) \rightarrow 0$ as $t \rightarrow \infty$, for $k \neq 1$.

NUMERICAL RESULTS

Given ten predator and prey subpopulations:
 For the **dominant** prey subpopulation,

 $a_1 = 1, b_1 = 0.8$

For the dominant predator subpopulation,

 $C_1 = 0.6, d_1 = 1.2$

• Each $x_i(0)$, i = 1,...,M and $y_j(0)$, j = 1,...,N is set equal to 0.18.

n = 2, ..., 10

• For non-dominant subpopulations ...

$$a_{n} = a_{n-1} - 0.020(n-1)$$

$$b_{n} = b_{n-1} + 0.016(n-1)$$

$$c_{n} = c_{n-1} + 0.012(n-1)$$

$$d_{n} = d_{n-1} - 0.024(n-1)$$

Figure 1: Total and dominant population trajectories for t in [0,250]

Figure 1 presents the *predator population* vs. *prey population* for *t* in [0,250].

• When t = 0, the total population trajectory starts at the point (X(0), Y(0)) = (1, 1.6) and moves in a counterclockwise fashion.

• When t = 0, the dominant subpopulations trajectory starts at $(x_1(0), y_1(0)) = (0.1, 0.1)$ and moves in a counterclockwise fashion as it approaches total population trajectory.

• Since every prey subpopulation other than the dominant one approaches zero as $t \to \infty$ the dominant prey subpopulation must approach the total prey population as $t \to \infty$

 The predatory case is strictly analogous.
 So, the trajectories must approach one another.

Let $a = a_1$, $b = b_1$, $c = c_1$, $d = d_1$ in the classical predator-prey system with initial conditions

 $(X(0), Y(0) = (x_1(250), y_1(250))$

After enough time has passed, the trajectory for the dominant predator-prey pair from the generalized system closely approximates the solution curve of a classical predator-prey system with this initial condition.

Conclusion

• As seen from both theoretical and numerical results, all non-dominant subpopulations in the generalized predator-prey model are forced to extinction as $t \rightarrow \infty$ due to closed reproduction.

Closed reproduction/Selection - individuals with the highest growth to mortality ratio only produce more of themselves.

• This conclusion may change with an open reproduction.

Conclusion

• **Open reproduction/Mutation** - individuals in one subpopulation have a positive probability of producing individuals that belong to different subpopulations.

Hence, survival of the dominant species implies survival of some of the others. In this case, surviving subpopulations have an *oscillatory* behavior.

SELECTION MODELS

Consider a competition among **N** populations where the dynamics of each population is expressed in the following form:

$$x_{i}' = x_{i}(a_{i} - b_{i}X) \quad \text{where} \quad X = \sum_{i=1}^{N} x_{i} \qquad \frac{a_{1}}{b_{1}} > \frac{a_{0}}{b_{1}}$$
$$X = \sum x_{i}' = \sum x_{i}(a_{i} - b_{i}X)$$
$$\leq \sum x_{i}(\bar{a} - bX)$$
$$= X(\bar{a} - bX)$$
$$X \text{ is bounded.}$$

As the asymptotic behavior shows, the population with the parameter (a_1,b_1) is the *fittest population*. That is, this is the only population that persists and the rest go to extinction.

Consider the ratio $\frac{x_i^{\xi}}{x_1^{\delta}}$. Thus $\frac{d}{dt}(x_i^{\xi}x_1^{-\delta}) = \xi x_i^{\xi-1}x_i'x_1^{-\delta} - \delta x_i^{\xi}x_1^{-\delta-1}x_1'$ If we let $x_i^{\xi}x_1^{-\delta} = \lambda$ then we arrive at

$$\frac{d}{dt}(\lambda) = \lambda \big(\xi a_i + \xi b_i X - \delta a_1 - \delta b_1 X\big)$$

Letting
$$\xi = \frac{1}{b_i}$$
, and $\delta = \frac{1}{b_1}$,
 $\frac{d\lambda}{dt} = \lambda \left(\frac{a_i}{b_i} + X - \frac{a_1}{b_1} - X \right)$
 $= \lambda \left(\frac{a_i}{b_i} - \frac{a_1}{b_1} \right) = c\lambda$
Since $\frac{a_1}{b_1} > \frac{a_i}{b_i}$, we have $c < 0$. Thus, $\frac{x_i^{\xi}}{x_1^{\delta}}$ approaches zero as

 $l \rightarrow \infty$. Because the denominator is bounded, the numerator must tend to zero at infinity. Thus, all non-dominant subpopulations die.

Now we show that the dominant subpopulation x_1 survives:

Recall
$$x_1' = x_1(a_1 - b_1x_1 - b_1\hat{X})$$
 $\hat{X} = \sum_{j=2}^n x_j$

and consider $y' = y(a_1 - b_1 y)$ • Notice $x' \le x_1(a_1 - b_1 x_1)$ *Hence* $x(t) \le y(t)$ by comparison.

Next, consider
$$\frac{d}{dt} \ln\left(\frac{x_1}{y}\right) = \frac{x_1'}{x_1} - \frac{y_1'}{y} = (a_1 - b_1 x_1 - b_1 \hat{X}) - (a_1 - b_1 y)$$

Making the substitution $\xi = \frac{1}{b_i}$, and $\delta = \frac{1}{b_1}$ we arrive at

$$b_1(y - x_1) = b_1 \hat{X} + \frac{d}{dt} \ln\left(\frac{x_1}{y}\right)$$

Integrating the equation from t_0 to t we arrive at: $\int_{t_0}^t \left(y(\tau) - x_1(\tau) \right) d\tau = \int_{t_0}^t \hat{X}(\tau) d\tau + \int_{t_0}^t \left(\frac{1}{b_1} \frac{d}{d\tau} \ln\left(\frac{x_1}{v}\right) \right) d\tau$ $=\frac{1}{b_1}\ln\left(\frac{x_1}{y}\right)\Big|_{t}^{t}+\int_{t_0}^{t}\hat{X}(\tau)d\tau$ $\leq \frac{1}{b_1} \ln \left(\frac{x_1}{y} \right) + \gamma \int_{t_0}^t \left(e^{-c\tau} d\tau \right) = \hat{M}$ Since $0 \leq \int_{-\infty}^{\infty} (y - x_1) dt \leq \hat{M}$ and $(y' - x_1')$ are bounded, we have $y - x_1 \to 0$ as $t \to \infty$. Since y approaches $\frac{a_1}{b_1}$

in the long term, so too does x_1

EPIDEMIC MODELS

The model considered is of the **SIR** type, in that the host population consists of susceptible, **S**, individuals infected with strains 1 through n, I_j , j=1,2, ..., n and immune or removed individuals, **R**. In addition, it is assumed that there is mass action horizontal transmission:

$$\begin{split} \dot{S}(t) &= S\left(f(N) - \sum_{j=1}^{n} \beta_{j} I_{j}\right) + \sum_{j=1}^{n} b I_{j} + b R \\ \dot{I}_{j}(t) &= I_{j}\left(f(N) - b + \beta_{j} S_{j} - \gamma_{j} - \mu_{j}\right), \quad j = 1, 2, \cdots, n \\ \dot{R}(t) &= R\left(f(N) - b\right) + \sum_{j=1}^{n} \gamma_{j} I_{j} \\ N &= S + R + \sum_{j=1}^{n} I_{j} \\ \dot{N}(t) &= N f(N) - \sum_{j=1}^{n} \mu_{j} I_{j} \end{split}$$

b is a birth rate, **f(N)** is the per capita growth rate, and **b-f(N)** is the natural death rate. β_j denotes the transmission rate for the ith strain and γ_j is the recovery rate from infection with strain j. All parameters are positive.

Competitive Exclusion

Let $c_j = b_j + \gamma_j + \mu_j > f(0)$

Then the basic reproduction number for strain j is given by:

$$R_{0,j} = \frac{\beta_j}{c_j} K, \quad j = 1, 2, ..., n$$

We define

$$B_{0,j} = \frac{\beta_j K}{c_j - f(0)}, \quad j = 1, 2, \dots, n$$

and assume for the rest of this section that for each j=2,...,n, one of the following conditions holds:

r (4):

0, j

or (3)
$$R_{0,1} > R_{0,j}$$
 and $c_j > c_1$
(4) $B_{0,1} > B_{0,j}$ and $\beta_j > \beta_1$
he following stronger conditions imply (3) of
 $R > R$ and $R > R$

-0, j

 $S(t) \ge \underline{S} \text{ for } t \in [0,\infty)$

We show that all the strains, except possibly one, die out.

•For j = 2, ..., n; $\lim_{t \to \infty} I_{j}(t) = 0.$

•First assume that the conditions in (3) hold for a fixed j and define $\Gamma(t)$ =

$$\frac{d}{dt}\Gamma_{1}(t) = \frac{\frac{1}{c_{j}}I_{j}^{\frac{1}{c_{j}}}(f(N) + \beta_{j}S - c_{j})I_{1}^{\frac{1}{c_{1}}} - \frac{1}{c_{1}}I_{1}^{\frac{1}{c_{1}}}(f(N) + \beta_{1}S - c_{1})I_{j}^{\frac{1}{c_{j}}}}{I_{1}^{\frac{2}{c_{1}}}}$$
$$= \frac{1}{c_{j}}\Gamma_{1}(t)(f(N) + \beta_{j}S - c_{j}) - \frac{1}{c_{1}}\Gamma_{1}(t)(f(N) + \beta_{1}S - c_{1})$$

$$\frac{d}{dt}\Gamma_{1}(t) = \Gamma_{1}(t) \left(\frac{f(N)}{c_{j}} - \frac{f(N)}{c_{1}} + \left(\frac{\beta_{j}}{c_{j}} - \frac{\beta_{1}}{c_{1}} \right) S \right)$$
$$\leq \frac{1}{2}\Gamma_{1}(t) \left(\frac{\beta_{j}}{c_{j}} - \frac{\beta_{1}}{c_{1}} \right) S$$

Expressed in terms of logarithms,

$$\frac{d\ln\Gamma_1(t)}{dt} \le \frac{1}{2} \left(\frac{\beta_j}{c_j} - \frac{\beta_1}{c_1} \right) \underline{S}$$

Thus

$$\Gamma_{1}(t) \leq \Gamma_{1}(0)e^{\frac{1}{2}\left(\frac{\beta_{j}}{c_{j}}-\frac{\beta_{1}}{c_{1}}\right)\underline{S}t}; \qquad I_{j}^{\frac{1}{c_{j}}}(t) \leq I_{1}^{\frac{1}{c_{1}}}(t)\Gamma_{1}(0)e^{\frac{1}{2}\left(\frac{\beta_{j}}{c_{j}}-\frac{\beta_{1}}{c_{1}}\right)\underline{S}t}$$

Since I_{1} is bounded, and $\left(\frac{\beta_{j}}{c_{j}}-\frac{\beta_{1}}{c_{1}}\right)<0$ we have $\lim_{t\to\infty}I_{j}(t)=0.$

Now define
$$\Gamma(t) = \frac{I_j^{\frac{1}{\beta_j}}}{I_1^{\frac{1}{\beta_1}}}$$

$$\frac{d}{dt}\Gamma_2(t) = \Gamma_2(t) \left(\frac{f(N)}{\beta_j} - \frac{f(N)}{\beta_1} + \left(\frac{c_1}{\beta_1} - \frac{c_j}{\beta_j}\right)S \right)$$

$$\leq \Gamma_2(t) \left(f(0) \left(\frac{1}{\beta_j} - \frac{1}{\beta_1}\right) + \left(\frac{c_1}{\beta_1} - \frac{c_j}{\beta_j}\right) \right)$$

$$= \Gamma_2(t) \left(\frac{c_1 - f(0)}{\beta_1} - \frac{c_j - f(0)}{\beta_j}\right)$$

Arguing as before we get $\lim_{t\to\infty} I_j(t) = 0$.

Assume that

 $R_{0,1} > 1 \quad then \quad \liminf_{t \to \infty} \ I_1(t) > 0$ Assume that $R_{0,1} < 1$

then

$$\lim_{t \to \infty} \left(S(t), \sum_{j=1}^{n} I_j(t), R(t) \right) = (K, 0, 0)$$

Coexistence Case

Consider the following case with two strains (n=2). Let $f(N) = r\left(1 - \frac{N}{K}\right)$ where K = 100 and the intrinsic growth rate is r = 4.

Birth rate, $b_j = 6$ and the transmission rates and recovery rates for the two strains are:

$$\beta_1 = 2, \beta_2 = 1$$
 and $\gamma_1 = 1 = \gamma_2$

Suppose strain 1 with the largest transmission rate also has the highest virulence, $\mu_1 = 10$, $\mu_2 = 3$. Clearly, in the case the reproduction number $R_{0,1} = 11.765 > 10 = R_{0,2}$. But, $C_1 = 17 > 10 = C_2$. However, $B_{0,1} = 15.385 < 16.667 = B_{0,2}$. But, $\beta_1 > \beta_2$ hence, neither condition (3) nor (4) are satisfied. Simple computations show that a positive steady state exists for this case and is given by

$$S = 7, I_1 = 4.929, I_2 = 8.571 and R = 4.5$$

Local stability analysis proves that this positive steady state is locally asymptotically stable. In particular, the Jacobian matrix has eigen values given by

 $\lambda_1 = -8.657 + 6.833i, \lambda_2 = -8.657 - 6.833i, \lambda_3 = -1.899, \lambda_4 = -0.216$

Our numerical results indicate that this equilibrium is indeed globally asymptotically stable.

Consider a species with *n* competing ecotypes.

For i = 1, 2, ..., n, we describe the dynamics of the subpopulation consisting of individuals of the *i*th ecotype with the following individual size-structured model of the McKendrick-von Foerster type.

 $(u_i)_t + g_i(P(t))(u_i)_x + m_i(P(t))u_i = 0 \quad 0 < x < \infty, \quad t > 0$

$$g_i(P(t))u_i(0,t) = \sum_{j=1}^{n} \int_0^{\infty} \gamma_{ij} \beta_j(P(t))u_j(x,t)dx \quad t > 0$$

 $u_i(x,0) = u_{i0}(x) \quad 0 \le x < \infty$

where $u_i(x,t)$ is the density of individuals of the *i*th ecotype having size *x* at time *t*

 $P(t) = \sum_{i=1}^{n} \int_{0}^{\infty} u_{i}(x,t) dx$ is the total number of

individuals in the population at time *t*. For an individual in the *i*th subpopulation ...

- g_i : is the *i*th growth rate
- m_i : is the *i*th mortality rate

 β_i : is the *i*th reproduction rate

 $0 \le \gamma_{i,j} \le 1$: probability that an individual of the *j*th ecotype will reproduce an individual of the *i*th ecotype.

Clearly,
$$\sum_{j=1}^{n} \gamma_{i,j} = \sum_{i=1}^{n} \gamma_{i,j} = 1, \quad 1 \le i, \quad j \le n$$

We focus on the asymptotic behavior of the population in two cases:

1. *Closed reproduction*: offspring always belong to same ecotype as the parent.

 $\gamma_{i,i}$ and $\gamma_{i,j} = 0$ for $i \neq j$

2. *Open reproduction*: individuals of ecotype *i* may reproduce individuals of ecotype *j*.

By integration of the PDE from 0 to infinity with respect to *t* and by making the following substitutions,

$$P(t) = \sum_{i=1}^{n} \int_{0}^{\infty} u_i(x,t) dx \quad and \quad P(t) = \int_{0}^{\infty} u_i(x,t) dx$$

we arrive at a system of n ODEs ...

$$P_i'(t) = \sum_{j=1}^n (\gamma_{i,j} \beta_j(P) P_j) - m_i(P) P_i, \quad P_i(0) > 0, \quad i = 1, 2, ..., n.$$

Asymptotic Behavior

In order to study the asymptotic behavior of the population, we consider the above system of coupled ordinary differential equations.

Assumptions for $0 \le P < \infty$

 $\beta_i(P)$ is non-increasing

 $m_i(P)$ is increasing

There exists P_i^* such that $\beta_i(P_i^*) = m_i(P_i^*)$, i = 1, 2, ..., n.

We first show that population *P(t)* is uniformly bounded.

Let $\overline{P} = \max_{1 \le i \le n} P_i^*$ and $\underline{P} = \min_{1 \le i \le n} P_i^*$. For any $0 < \varepsilon < 1$, define $I_{\varepsilon} = [\underline{P}(1-\varepsilon), \overline{P}(1+\varepsilon)]$. Then there exists a finite time t_{ε}^* such that $P \in I_{\varepsilon}$ for $t \ge t_{\varepsilon}^*$.

Closed Reproduction Case

Recall that in the closed reproduction case, $\gamma_{i,i}$ and $\gamma_{i,j} = 0$ for $i \neq j$ Therefore the system of ODEs reduces to the following, $P_i' = (\beta_i(P) - m_i(P))P_i \quad P_i(0) > 0, \quad i = 1, 2, ..., n.$

Under the assumption,

 $\begin{aligned} &\frac{\beta_{i}(P)}{m_{i}(P)} > \frac{\beta_{i}(P)}{m_{i}(P)}, \quad i = 2, ..., n \text{ ; for any } P \in I_{0} = \left[\underline{P}, \overline{P}\right] \\ &\text{Then the solution of } P_{i}' = \left(\beta_{i}(P) - m_{i}(P)\right)P_{i} \quad P_{i}(0) > 0, \quad i = 1, 2, ..., n. \\ &\text{satisfies that for each } i = 2, ..., n \text{ ; } P_{i}(t) \to 0 \text{ as } t \to \infty \end{aligned}$

To show this, it suffices to show that for i = 2, ..., n, $\frac{P_i^{\sigma_i}}{P_1} \rightarrow 0$ as $t \rightarrow \infty$ for some positive constant σ_i

What's left is to show that $P_1(t) \rightarrow P_1^*$ as $t \rightarrow \infty$

This can be shown by considering the following initial value problem: $|y' = (\beta_1(y) - m_1(y))y, t_{\varepsilon}^* < t < \infty,$ $y(t_{\varepsilon}^*) = P_1(t_{\varepsilon}^*)$ Clearly, $y(t) \rightarrow P_1^*$ as $t \rightarrow \infty$. Furthermore, since $P_1 \leq (\beta_1(P_1) - m_1(P_1))P_1$ by comparison $y(t) \geq P_1(t)$ for all $t \ge t_c^*$. On the other hand we have: $\frac{d}{dt}\ln\left(\frac{P_{1}}{v}\right) = \frac{\tilde{P}_{1}'}{P_{1}} - \frac{y'}{v} = (\beta_{1}(P) - m_{1}(P)) - (\beta_{1}(y) - m_{1}(y))$ $= \left(\beta_{1}(\hat{\xi}) - m_{1}'(\hat{\xi})\right) \left(P_{1} - y\right) + \left(\beta_{1}'(\xi) - m_{1}'(\xi)\right) \sum_{j=1}^{n} P_{j}$ Where ξ is between P and P₁ and $\hat{\xi}$ is between P₁ and y

Rearranging the terms, we arrive at

$$y - P_1 \le \frac{1}{c} \left(\frac{d}{dt} \ln(\frac{P_1}{y}) + (m_1'(\hat{\xi}) - \beta_1'(\hat{\xi})) \sum_{j=2}^n P_j \right)$$

Integrating from space to *t*, we get

$$\begin{split} &\int_{t_{\varepsilon}^{*}} \left(y(\eta) - P_{1}(\eta) \right) d\eta \leq \\ &\frac{1}{c} \left(\ln \left(\frac{P_{1}(t)}{y(t)} \right) + \sum_{j=2}^{n} \int_{t_{\varepsilon}^{*}}^{t} \left(\left[m_{1}'(\xi) - \beta_{1}'(\xi) \right] P_{j}(\eta) \right) d\eta \right) \leq M < \infty \end{split}$$

where *M* is independent of *t*.

Open Reproduction Case

In this case, we assume that reproduction is open under subpopulations, that is, individuals in the *i*th subpopulation may also reproduce individuals in the *j*th population. If the graph associated with the matrix $[\gamma_{i,j}]$ is strongly connected (the matrix is irreducible), then all ecotypes of the population coexist. For convenience, we assume the following:

Hypothesis 1:

$$\gamma_{1,2} > 0, \quad \gamma_{2,3} > 0, \dots \quad \gamma_{n-1,n} > 0 \text{ and } \gamma_{n,1} > 0. \text{ otherwise}$$

 $\gamma_{i,j} > 0, \quad 1 \le i, j \le n$

If Hypothesis1 holds, then there exists a positive constant c such that

$$\lim \inf_{t \to \infty} P_i(t) \ge c \quad for \quad i = 1, 2, ..., n$$

NUMERICAL RESULTS

In the **closed reproduction** case, it is clear that subpopulations with smaller ratios $\frac{\beta_i(P)}{m_i(P)}$ will go to extinction.

This leads to the question:

What happens if two subpopulations have the same largest ratio?

We focus on the following subsystem consisting of two subpopulations with the largest ratio $\frac{\beta_1(P)}{m_1(P)} = \frac{\beta_2(P)}{m_2(P)}$

$P_i' = (\beta_i(P) - m_i(P))P_i, P_i(0) > 0, i = 1, 2.$

In this case, both subpopulations should survive. However, the asymptotic behavior of this two-ecotype system depends on the initial conditions $P_i(0)$, i=1,2

In the **open reproduction** case, if the kth $(1 \le k \le n)$ node in the graph associated with the matrix $[\gamma_{i,j}]$ is not connected to any other node, i.e.,

 $\gamma_{k,k} = 1 \text{ and } \gamma_{k,j} = 1 \text{ for } j = 1, \dots, k - 1, k + 1, \dots, n,$

then the kth subpopulation may become extinct.