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Principle of Competitive ExclusionPrinciple of Competitive Exclusion

• When two or more species compete for the 
same basic resources, the “strongest” survives; 

the weaker species is driven to extinction.

• Biologist G. F. Gause (1932, 1934) illustrates 

various competitive outcomes when the 
competing species are yeasts, e.g., 

Saccharomyces cervisiae and 
Schizosaccharomyces kephir.



Equilibrium AnalysisEquilibrium Analysis

Recall for a differential equation of the form

)(' xfx = , solutions that satisfy 0)( =xf

are called equilibrium points or steady state 
solutions.
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Equilibrium Analysis of a SystemEquilibrium Analysis of a System

Given a system ),('),(' yxgyandyxfx ==
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and an equilibrium , the Jacobian

is used to 
determine stability.

If the eigenvalues satisfy                

Or alternatively, if Det(J) > 0 and

Tr(J) < 0, then           

Then the equilibrium point is locally stable.
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ReviewReview
• Recall the classical logistic model,

• Equilibria for this model are: 

• Furthermore, stability analysis gives: 
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Logistic ContinuedLogistic Continued



LotkaLotka--Volterra Model for Volterra Model for 

22--Species: xSpecies: x11 and xand x22
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LotkaLotka--Volterra Model for Volterra Model for 

22--Species: xSpecies: x11 and xand x22
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is the intrinsic growth rate (births – deaths) 

of species i

is the carrying capacity of species i

i

ij

K

β is the competition coefficient of species i



LotkaLotka--Volterra Model for Volterra Model for 

22--Species: xSpecies: x11 and xand x22

• The per capita growth rate
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therefore this is a competition model.• Also 



LotkaLotka--Volterra Model for Volterra Model for 

22--Species: xSpecies: x11 and xand x22

For species x1, isoclines are

212111 0 xxKandx β+==

For species x2, isoclines are

121222 0 xxKandx β+==

There are four cases to consider 
depending on how isoclines intersect in the 

1st quadrant …



LotkaLotka--Volterra Model for Volterra Model for 

22--Species: xSpecies: x11 and xand x22

Case 1 – Positive solutions approach equilibrium (K1,0); 

species 1 always dominates (competitive exclusion).
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LotkaLotka--Volterra Model for Volterra Model for 

22--Species: xSpecies: x11 and xand x22

Case 2 – Positive solutions approach equilibrium (0, K2); 

species 2 always dominates (competitive exclusion).
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LotkaLotka--Volterra Model for Volterra Model for 

22--Species: xSpecies: x11 and xand x22

Case 3 – Positive solutions approach either equilibrium 

(K1,0)  or (0,K2). The outcome depends on initial conditions, 

referred to as the Founder Effect. The species first to 

establish itself (the founder) has an advantage and will be 

the superior competitor.
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LotkaLotka--Volterra Model for Volterra Model for 

22--Species: xSpecies: x11 and xand x22

Case 4 – Positive solutions approach the equilibrium
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LotkaLotka--Volterra Volterra 

PredatorPredator--Prey ModelsPrey Models



Review of Classical LotkaReview of Classical Lotka--

Volterra PredatorVolterra Predator--Prey ModelPrey Model
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X(t) and Y(t) denote prey population size and 
predator population size, respectively at t > 0.

For prey: a and b are fixed growth and 
mortality rates, respectively.

For predator: d and c are fixed growth and 
mortality rates, respectively.



Review of Classical LotkaReview of Classical Lotka--

Volterra PredatorVolterra Predator--Prey ModelPrey Model

It is well known that the solution is a closed curve in         

satisfying 

where k is a constant depending upon initial conditions 

and the point               is interior to the curve.  
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Review of Classical LotkaReview of Classical Lotka--

Volterra PredatorVolterra Predator--Prey ModelPrey Model

Predator Y(t) vs Time Prey X(t) vs Time



Review of Classical LotkaReview of Classical Lotka--

Volterra PredatorVolterra Predator--Prey ModelPrey Model

Predator Y(t) vs Prey X(t)



Generalized LotkaGeneralized Lotka--Volterra Volterra 

PredatorPredator--Prey ModelPrey Model

Assume: Prey and predator populations are divided into 
M and N subpopulations respectively. 

• Growth for prey is subpopulation specific, while 
mortality is driven by interaction with entire predator 
subpopulation.

• Growth for predator is driven by interaction with entire 
prey population; mortality is subpopulation specific.

Let xi(t) and yj(t) be the sizes of the i th prey subpopulation and 

the j th predator subpopulation at time t > 0, where i = 1, … ,M

and j = 1, … ,N.

Let x(t) = (x1(t), … , xM(t)) and y(t) = (y1(t), … , yN(t)).



Generalized LotkaGeneralized Lotka--Volterra Volterra 

PredatorPredator--Prey ModelPrey Model
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Dominance and Extinction of Dominance and Extinction of 

NonNon--dominant Subpopulationdominant Subpopulation

Suppose subpopulations are ordered such that:
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x1 and y1 are dominant in the sense that they 

have the highest growth to mortality ratios
within the prey and predator classes, 

respectively.



Dominance and Extinction of Dominance and Extinction of 

NonNon--dominant Subpopulationdominant Subpopulation
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• x1 and y1 remain bounded and strictly positive.

This is why:
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Dominance and Extinction of Dominance and Extinction of 

NonNon--dominant Subpopulationdominant Subpopulation

The total derivative of H along any solution 

of the system is negative. That is,

for all t > 0. Hence, the auxiliary function H

is bounded above on [0,   ).
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Dominance and Extinction of Dominance and Extinction of 

NonNon--dominant Subpopulationdominant Subpopulation

∞→→∞→→ tastyandtastx kk 0)(0)(
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Dominance and Extinction of Dominance and Extinction of 

NonNon--dominant Subpopulationdominant Subpopulation
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Dominance and Extinction of Dominance and Extinction of 

NonNon--dominant Subpopulationdominant Subpopulation

By the dominance of x1, we have

where is a positive constant.

So we have a first order differential equation
of the form                                 whose 

solution is  . In terms of x, we 
have
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Dominance and Extinction of Dominance and Extinction of 

NonNon--dominant Subpopulationdominant Subpopulation

Solving for xk , we obtain

Since x1(t) is bounded on [0, ∞), there exists a 

positive constant A such that

for t > 0. So for k ≠ 1.

An analogous argument for the predator case 

yields for k ≠ 1.
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Dominance and Extinction of Dominance and Extinction of 

NonNon--dominant Subpopulationdominant Subpopulation

NUMERICAL RESULTS

• Given ten predator and prey subpopulations:

For the dominant prey subpopulation, 

a1 = 1, b1 = 0.8

For the dominant predator subpopulation, 

c1 = 0.6, d1 = 1.2

• Each xi(0), i = 1,…,M and yj(0), j = 1,…,N is 
set equal to 0.18.



Dominance and Extinction of Dominance and Extinction of 

NonNon--dominant Subpopulationdominant Subpopulation
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• For non-dominant subpopulations …



Dominance and Extinction of Dominance and Extinction of 

NonNon--dominant Subpopulationdominant Subpopulation

Figure 1: Total and dominant population trajectories for t in [0,250]
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Populations



Dominance and Extinction of Dominance and Extinction of 

NonNon--dominant Subpopulationdominant Subpopulation

Figure 1 presents the predator population
vs. prey population for t in [0,250].

• When t = 0, the total population trajectory 
starts at the point (X(0), Y(0)) = (1, 1.6) and 

moves in a counterclockwise fashion.

• When t = 0, the dominant subpopulations 
trajectory starts at (x1(0), y1(0)) = (0.1, 0.1) 

and moves in a counterclockwise fashion 

as it approaches total population trajectory.



Dominance and Extinction of Dominance and Extinction of 

NonNon--dominant Subpopulationdominant Subpopulation

• Since every prey subpopulation other than 
the dominant one approaches zero as 

the dominant prey subpopulation must 

approach the total prey population as 

• The predatory case is strictly analogous. 
So, the trajectories must approach one 

another.
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Dominance and Extinction of Dominance and Extinction of 

NonNon--dominant Subpopulationdominant Subpopulation
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Dominance and Extinction of Dominance and Extinction of 

NonNon--dominant Subpopulationdominant Subpopulation

Let           ,          ,          ,           in the 
classical predator-prey system with initial 

conditions                                                  

.

After enough time has passed, the 
trajectory for the dominant predator-prey 

pair from the generalized system closely 
approximates the solution curve of a 

classical predator-prey system with this 

initial condition.
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ConclusionConclusion

• As seen from both theoretical and numerical 
results, all non-dominant subpopulations in the 

generalized predator-prey model are forced to 

extinction as              due to closed reproduction.

Closed reproduction/Selection - individuals with 

the highest growth to mortality ratio only produce 
more of themselves.  

• This conclusion may change with an open 

reproduction.

∞→t



ConclusionConclusion

• Open reproduction/Mutation - individuals in one 

subpopulation have a positive probability of producing 

individuals that belong to different subpopulations.  

Hence, survival of the dominant species implies survival of 

some of the others.  In this case, surviving subpopulations 

have an oscillatory behavior.
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Selection ModelsSelection Models

Consider a competition among N populations where the dynamics of each

population is expressed in the following form:
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As the asymptotic behavior shows, the population with the parameter 

(a1,b1) is the fittest population. That is, this is the only population that 

persists and the rest go to extinction.
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Selection ModelsSelection Models

Letting ,
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Since , we have c < 0. Thus,         approaches zero as

. Because the denominator is bounded, the numerator 

must tend to zero at infinity. Thus, all non-dominant subpopulations 

die.



Selection ModelsSelection Models

Now we show that the dominant subpopulation x1 survives:
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Selection ModelsSelection Models
Integrating the equation from         to       we arrive at:
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Competitive Exclusion for 

an Epidemic Model



Competitive Exclusion for an epidemic model

The model considered is of the SIR type, in that the host population consists of 

susceptible, S, individuals infected with strains 1 through n, Ij , j=1,2. … , n and 

immune or removed individuals, R. In addition, it is assumed that there is mass 

action horizontal transmission:
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b is a birth rate, f(N) is the per capita growth rate, and b-f(N) is the natural 

death rate.        denotes the transmission rate for the ith strain and        is 

the recovery rate from infection with strain j. All parameters are positive.

jβ



Competitive Exclusion for an epidemic model

Competitive Exclusion
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Competitive Exclusion for an epidemic model

),0[)( ∞∈≥ tforStS

We show that all the strains, except possibly one, die out. 

•For  j = 2, …, n; 
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Competitive Exclusion for an epidemic model
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Now define
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Arguing as before we get .0)(lim =∞→ tI jt
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Assume that

Assume that

then 
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Coexistence Case

Consider the following case with two strains (n=2). Let 

where K = 100 and the intrinsic growth rate is r = 4.

Birth rate, bj = 6 and the transmission rates and recovery rates for the 

two strains are:

Suppose strain 1 with the largest transmission rate also has the highest 

virulence,                            . Clearly , in the case the reproduction 

number R0,1 = 11.765 > 10 = R0,2. But, C1 = 17 > 10 = C2. However, 

B0,1 = 15.385 < 16.667 = B0,2. But,                hence,  neither condition 

(3) nor (4) are satisfied. Simple computations show that a positive 

steady state exists for this case and is given by               
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Local stability analysis proves that this positive steady state is 

locally asymptotically stable. In particular, the Jacobian matrix has 

eigen values given by 

Our numerical results indicate that this equilibrium is indeed globally 

asymptotically stable.

216.0,899.1,833.6657.8,833.6657.8 4321 −=−=−−=+−= λλλλ ii
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Consider a species with n competing ecotypes.

For i = 1,2,…,n, we describe the dynamics of the subpopulation 

consisting of individuals of the ith ecotype with the following individual 

size-structured model of the McKendrick-von Foerster type.
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),( txuiwhere              is the density of individuals of the ith ecotype having size x

at time t
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is the total number of 

individuals in the population at time t. For an individual in the ith

subpopulation …
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is the ith growth rate

is the ith mortality rate

is the ith reproduction rate

probability that an individual of the jth ecotype 

will reproduce an individual of the ith ecotype.
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1. Closed reproduction: offspring always belong to same ecotype as 

the parent.

jiforand jiii ≠= 0
,,

γγ

2. Open reproduction: individuals of ecotype i may reproduce individuals 

of ecotype j.

We focus on the asymptotic behavior of the population in two cases:
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By integration of the PDE from 0 to infinity with respect to t and by

making the following substitutions,

we arrive at a system of n ODEs …
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Assumptions for

is non-increasing 

is increasing

There exists   such that 
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Asymptotic Behavior
In order to study the asymptotic behavior of the population, we 
consider the above system of coupled ordinary differential 
equations.
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Closed Reproduction Case

Recall that in the closed reproduction case, 

Therefore the system of ODEs reduces to the following,

jiforand jiii ≠= 0,, γγ

( ) .,...,2,1,0)0()()(' niPPPmPP iiiii =>−= β

.minmax
*

1

*

1 iniini PPandPP ≤≤≤≤ ==

We first show that population P(t) is uniformly 

bounded.

Let 
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Under the assumption,

Then the solution of 

satisfies that for each i = 2,…,n ;                        as
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What’s left is to show that                       as*
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Where        is between P and P1 and       is between P1 and yξ ξ̂
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Rearranging the terms,  we arrive at

Integrating from space to t, we get

where M is independent of t.
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Open Reproduction Case

In this case, we assume that reproduction is open under subpopulations,

that is, individuals in the ith subpopulation may also reproduce individuals

in the jth population. If the graph associated with the matrix           is

strongly connected (the matrix is irreducible), then all ecotypes of 

the population coexist. For convenience, we assume the following:

Hypothesis 1:

If Hypothesis1 holds, then there exists a positive constant c such that 
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NUMERICAL RESULTS

In the closed reproduction case, it is clear that 

subpopulations with smaller ratios                  will go to 

extinction.

This leads to the question:  

What happens if two subpopulations have the same 
largest ratio?
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We focus on the following subsystem consisting of two 

subpopulations with the largest ratio

In this case, both subpopulations should survive.  However,  

the asymptotic behavior of this two-ecotype system depends 

on the initial conditions .                
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)1( nk ≤≤In the open reproduction case, if the kth

node in the graph associated with the matrix                    
is not connected to any other node, i.e., 

then the kth subpopulation may become extinct.
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