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Concepts for inverse problems/parameter estimation problems
illustrated by examples—Involves both deterministic and 
probabilistic/stochastic/statistical analysis
Includes:
• Identifiability
• Ill-posedness
• Stability
• Regularization
• Approximation
• Reduced order modeling  {Proper Orthogonal 
Decomposition(POD)/Principal Component Analysis(PCA)}
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FORWARD PROBLEM
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INVERSE PROBLEM
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Electronic Polarization—electronic cloud displacement

= displacement of negative charge of 
mass m from equilibrium of electronic
cloud center
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Usually are not given observations of all of system state z(t):
Example(mass-spring-dashpot system):
First, rewrite as first order vector system:
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“Model driven” vs. “data driven” inverse problems
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Many (most!) of examples lead to the introduction of
variability into both the modeling and the analysis!!

i) Physiologically Based Pharmacokinetic 
(PBPK) modeling in toxicokinetics

ii)   Modeling of HIV pathogenesis
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PBPK Models for
TCE in Fat Cells

Millions of cells with
varying size, residence
time, vasculature, 
geometry:
“Axial-dispersion” type
adipose tissue compartments
to embody uncertain
physiological heterogeneities
in single organism (rat) =
intra-individual variability

Inter-individual variability treated with parameters (including dispersion
parameters) as random variables –estimate distributions from aggregate
data (multiple rat data) which also contains uncertainty (noise)
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MODELING OF HIV PATHOGENESIS                   

GOALS
DEVELOPMENT OF DYNAMIC 
MODELS INVOLVING INTRA-
AND INTER-INDIVIDUAL 
VARIABILITY TO AID IN 
UNDERSTANDING OF 
FUNDAMENTAL MECHANISMS
OF INFECTION AND SPREAD 
OF DISEASE-AGGREGATE
DATA ACROSS POPULATIONS

POTENTIAL AND SIGNIFICANCE
POPULATION LEVEL ESTIMATION OF 
SPREAD RATES AND EFFICACY IN 
TREATMENT PROGRAMS FOR  
EXPOSURE
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Involves systems of equations of the form (generally nonlinear)

τwhere       is a production delay (distributed across the population 
of cells). That is, one should write 

where  k  is a probability density to be estimated from aggregate 
data.

Even if k is given, these systems are nontrivial to simulate—require
development  of  fundamental techniques.
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The problems above are ( as are most others) notoriously
ill-posed!! This concept is difficult to explain in the context
of the problems outlined above—so we turn to some 
exceedingly simple examples to illustrate the ideas behind
well-posedness!   Simplest case: 

1

    ( )     
( )    

one observation y for f  and need to find preimage
f y for a given y

θ

θ ∗ −

− −

=

θ ∗ yf
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Y1f −
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Well-posedness:

i. Existence
Identifiability

i. Uniqueness

ii. Continuous dependence of solutions on observations

“stability” of inverse problem

}

24

2( ) 1f θ θ= −
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Why is this so important???
Why not just apply a good numerical algorithm for a 
least squares (for example) fit to try to find the “best”
possible solution???? (Seldom expect zero residual!!)

2
1 1     ( ) ( )          

      
   

  
 !

 

!

Define J y f for a given y
and then apply a standard iterative method to obtain
a solution
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This behavior is not the fault of steepest descent 
algorithms, but is a manifestation of the inherent 
“ill-posedness” of the problem!!

How to fix this is the subject of much research over 
the past 40 years!!  Among topics are:

explicit(compact
i) constrained optimization                      constraint sets)

implicit(Lagrange 
multipliers)

a) Tikhonov regularization(1963)
ii) regularization (compactification, convexification)

b) regularization by discretization
{

{

28

Tikhonov regularization

2 2
1 0
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              ( ) ( )         
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−

!
PRO: When done correctly, provides convexity and compactness
in the problem!
CON: Even when done correctly, it changes the problem and 
solutions to the new problems may not be close to those of original! 
Moreover, it is not easy to do correctly or even to know if you have 
done so!! 
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EXAMPLE:
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RUN MOVIE EXAMPLES
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APPROXIMATION/COMPUTATIONAL ISSUES
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Finite elements generally result in large 
(dimension ~ 10,000-20,000) approximating 
systems!! These can be extremely time 
consuming in inverse problem calculations. 
So there is great interest in model reduction
techniques that will result in substantial 
reduction in time!  One such 
technique (Proper Orthogonal Decomposition),
has been successfully used in eddy current 
based NDE examples
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DAMAGE DETECTION USING EDDY CURRENT TECHNIQUES

GOALS
Develop fast on-line computational methods 
for use with highly sensitive magnetic flux
sensors in detection of subsurface damages 
SIGNIFICANCE
Development of portable, real time scanning 
devices for damage detection in conductive
materials. Potential for fast scanners for 
nondestructive evaluation in aging aircraft,
spacecraft and other structures 
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SUMMARY REMARKS
1. Two classes of problems (model/design driven-no data, 

and data driven)
2. In both classes, may need to introduce variability/un-

certainty (recall PBPK, HIV examples ) even when 
considering simple case of a single individual

3. If design/model driven efforts are successful (recall eddy 
current NDE example), most likely will lead to 
validation experiments, data, and necessitate develop-
ment of  statistical models

4. There are significant issues, challenges, and 
methodology ( well-posedness, regularization, 
approximation/computation, model reduction, etc.) 
that are important to consider in both classes of 
problems!


