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Figure 1: Virions budding from T cell
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Figure 2: HIV retrovirus infection schematic
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HIV and Treatment

• Human Immunodeficiency Virus is a retrovirus.

• Infects CD4 helper T-cells of the immune system to reproduce

• Typical HIV treatment (combination therapy) suppresses viral

infection and production.

Difficulties with Continuous Therapy

• Serious side effects of long-term treatment

• Variable patient adherence; lack of availability / high cost of drugs

• Drug efficacy fades as virus mutates, becomes resistant

• Eradicating virus decimates immune system
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Clinical Study: Structured Treatment Interruption (STI)

• Eric Rosenberg, M.D., Mass. General Hospital, Boston, studies STI –

over 120 patients.

• Control drug via fixed schedule or feedback on virus or T-cell quantities

treatment protocol

(control input ε(t):

drug efficacy)

.

on

off

0

1

ε(t)

time(t)

Why Interrupt?

• Break from side effects, reduced drug treatment cost

• Boosts the immune system, may cause self-vaccination

• The Berlin Patient (Lisziewicz, Rosenberg, et al., 1999), others
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Typical Study Data
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• Red bar denotes off treatment periods – note viral rebound

• Viral load measurements have limit of detection: 400 or 50 copies/ml
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Overview: Modeling and Control for HIV

GOAL: Use HIV infection models to help Rosenberg and clinicians

understand patient data (e.g, what differentiates rapid progressors from

long-term non-progressors) and suggest better treatment schemes.

Article: J. Comp. Appl. Math (CRSC–TR04–05) (invited-special issue on

Math Applied to Immunology (2005))

Article: Math. Biosci. Engr. 1 (2004),223–241.

• Model survey, integration and development-study qualitative properties

• Open loop control theory using model to determine optimal treatment

schedules

• Selection of patient data to fit based on analysis with POD (SVD, PCA)

• Develop and apply inverse problem methods to fit model to patient

data
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Desired Model Features

• Multiple stable steady states: viral dominant; immune dominant

• Ability to incorporate single or multi-drug therapy, appropriate sensitivity

to drug treatment

• At minimum, model states (compartments) to reflect physiology and

data:

� uninfected and infected T-cells

� free plasma virus

� immune response
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HIV Infection Dynamics Model

• Based on Callaway–Perelson (2001), Bonhoeffer, et. al. (2000) models

• Two co-circulating target cell populations T1, T2
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HIV Infection Dynamics Model

Uninfected type 1: Ṫ1 = λ1 − d1T1 − (1 − ε1)k1VT1

Uninfected type 2: Ṫ2 = λ2 − d2T2 − (1 − fε1)k2VT2

Infected type 1: Ṫ∗
1 = (1 − ε1)k1VT1 − δT∗

1 − m1ET∗
1

Infected type 2: Ṫ∗
2 = (1 − fε1)k2VT2 − δT∗

2 − m2ET∗
2

Free virions: V̇ = (1 − ε2)NT δ(T∗
1 + T∗

2) − cV

− [(1 − ε1)ρ1k1T1 + (1 − fε1)ρ2k2T2]V

Immune effectors: Ė = λE + bE(T∗
1+T∗

2)
(T∗

1+T∗
2)+Kb

E − dE(T∗
1+T∗

2)
(T∗

1+T∗
2)+Kd

E − δEE

• From now on, q denotes one or more model parameters (of interest),

for example, q = [k1, c, NT ].

• Solve ODE system with LSODE, LLNL’s CVODE, or Matlab’s ODE15s
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Sample Model Equilibria

(Off treatment steady states)

EQ0 EQ1 EQ2

T1 (cells/ml) 1000000 163573 967839

T2 (cells/ml) 3198 5 621

T∗
1 (cells/ml) 0 11945 76

T∗
2 (cells/ml) 0 46 6

V (copies/ml) 0 63919 415

E (cells/ml) 10 24 353108

local stability unstable stable stable

uninfected viral dominant immune dominant
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Figure 3: E1(q): “unhealthy” locally asymptotically stable equilibrium point

with its domain of attraction N1(q); E2(q): “healthy” locally asymptotically

stable equilibrium point with its domain of attraction N2(q); (- - -) uncontrolled

trajectory; (—) controlled trajectory.
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Simulated Data Generation

• Have clinical data from patients corresponding to model states

x =

⎡
⎢⎣ T1 + T∗

1

V
E

⎤
⎥⎦ (CD4 T-cells)

(free virions)

(CTL immune response)

• Verify methods on simulated data yi
s generated for times

ti, i = 1, . . . , N :

yi
s = xs(t

i;q) + εi
s.

Here, s = 1, 2, 3, indexes the components of the state x and errors εi
s

are such that

� Mean response given by ODE model: E(yi
s) = xi

s(q)

� Variance model: Var(yi
s) = σ2

s {xi
s(q)}2

(constant coefficient of variation or lognormal model – typical for

blood draws)
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Next: Fitting Model to Data

1. Overview of HIV infection

2. Data: clinical treatment interruption study

3. Modeling goals and ODE system

4. Inverse problem methods: single patient and distributed

5. Computational results with simulated data, use of regularization

6. Confidence intervals for estimates

7. Algorithm and preliminary results for clinical data

8. Summary and goals
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Multiple Patient Inverse Problem

For each patient j = 1 . . . NP , we have (clinical or simulated) data pairs

(tij,yij) at times tij, i = 1, . . . , Nj.

GOAL: Understand how one or more model parameters (e.g. k1, infectivity)

varies across the population – can we estimate distributions of parameters

from patient data?
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Multiple Patient Inverse Problem Approaches

• Fit ODE model to each patient j yielding parameters qj :

q∗
j = arg min

q∈Q
J(q) =

1

Nj

Nj∑
i=1

∣∣x(ti;q) − yij
∣∣2

(standard nonlinear least squares), then perform statistical analysis.

• Fit model to all patients simultaneously; each has a qj . Given a

probability space Q in which the parameters of interest q live:

P ∗ = arg min
P∈Q

J(P ) =
1

NP

NP∑
j=1

1

Nj

Nj∑
i=1

∣∣E [
x(tij;q)|P (q)

] − yij
∣∣2

• Fully hierarchical – estimate distributions of parameters and errors for

each patient as well, assuming a model for their overall distribution.
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Why Estimate Distribution P?

• Estimate using data from multiple patients (less costly)

• Admits non-parametric distribution – can avoid distribution

misspecification (e.g., seek parameters for normal when reality

bimodal – example from Banks, Ma, Potter (2004))

(density) (distribution)
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Possible Spaces of Distributions

P ∗ = arg min
P∈Q

J(P ) =
1

NP

NP∑
j=1

1

Nj

Nj∑
i=1

∣∣E [
x(tij;q)|P (q)

] − yij
∣∣2

• Problem assumes model parameters of interest q for each patient are

realizations of a random variable with probability distribution P .

• P belongs to a probability space Q of distributions on the admissible

parameter space Q. For example Q could be the set

� of normal distributions over Q, parameterized by N (µ, σ2)

� PM = {P =
∑M

k=0 pkδqk
}, where qk ∈ Q, pk ≥ 0,

∑M
k=0 pk = 1

(point masses – nonparametric)
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Inverse Problem: Theory and a Special Case

Inverse problem: Minimize J(P ) over P ∈ Q ⊂ P(Q)

• Banks/Bihari (2001): P → J(P ) continuous in Prohorov ρ metric, with

conditions on Q are sufficient to establish a minimizer’s existence.

• Our special case: distributions P characterized by their densities: For

F ⊂ L2(Q), define

PF(Q) := {P ∈ P(Q)|P ′ = f, f ∈ F}

• Inverse problem is equivalent to minimizing J (P (f)) over densities f ,

where

E [
x(tij; q)|P (f)

]
=

∫
Q

x(tij; q) f(q) dq
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Approximating Probability Densities

Computationally: approximate densities f(q) by piecewise linear splines

defined on a finite dimensional set {qk}NS
k=0 ⊂ Q.{

f ≈
NS∑
k=0

dkφk(q), dk ≥ 0,

NS−1∑
k=0

∆qk

2
(dk + dk+1) = 1

}
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Banks with Pinter (2004), Potter (2003), Bihari (2001): such spline approximations yield

well-posed inverse problems which converge in the Prohorov metric (hence in distribution).
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Inverse Problem in this Setting: Quadratic Programming

J(P (f)) =
1

NP

NP∑
j=1

1
Nj

Nj∑
i=1

∣∣E [
x(tij ; q)|P (f(q))

] − yij
∣∣2

=
1

NP

NP∑
j=1

1
Nj

Nj∑
i=1

∣∣∣∣
∫

Q

x(tij ; q)f(q)dq − yij

∣∣∣∣
2

≈ 1
NP

NP∑
j=1

1
Nj

Nj∑
i=1

∣∣∣∣∣
{

NS−1∑
k=0

∆qk

2
(
xij(qk)dk + xij(qk+1)dk+1

)} − yij

∣∣∣∣∣
2

which is a constrained quadratic programming problem in the

coefficients dk, k = 0, . . . , NS :

J(d) = dT Ad + 2bTd + c

where A,b, and c are functions of the data yij and model solutions xij at

fixed nodes qk.
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Computational Considerations

• Given nodes qk, model solutions x(t; qk) can be computed offline.

• Easily parallelizable, enabling adaptive node placement in reasonable

time

• Matlab’s quadprog solves J(d) = dT Ad + 2bTd + c in seconds.
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Next: Results for Density Estimation

1. Overview of HIV infection

2. Data: clinical treatment interruption study

3. Modeling goals and ODE system

4. Inverse problem methods: single patient and distributed

5. Computational results with simulated data, use of regularization

6. Confidence intervals for estimates

7. Algorithm and preliminary results for clinical data

8. Summary and goals
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Results: Improvement with Larger Sample Size NP
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28



Improvement with More Splines?

Expect convergence as NS → ∞ . . .
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Help from Regularization

Modified cost criterion to penalize non-smoothness:

J(f) =
1

NP

NP∑
j=1

1
Nj

Nj∑
i=1

∣∣E [
x(tij ; q)|f] − yij

∣∣2 + β

∥∥∥∥df

dq
(q)

∥∥∥∥
2

L2

Approximate regularization term with trapezoid rule, build directly into quadratic

programming problem A matrix.
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Next: Uncertainty of Estimation Process

1. Overview of HIV infection

2. Data: clinical treatment interruption study

3. Modeling goals and ODE system

4. Inverse problem methods: single patient and distributed

5. Computational results with simulated data, use of regularization

6. Confidence intervals for estimates

7. Algorithm and preliminary results for clinical data

8. Summary and goals
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Quantifying Uncertainty in Estimated Parameters

Goal: Quantify variability of estimates f∗(q) this process yields.

First: Standard errors for NLSQ inverse problem for parameter vector q:

q∗ = arg min
q

N∑
i=1

∣∣x(ti;q) − yi
∣∣2

If Xq(q) = ∂x
∂q

is the Jacobian matrix for the ODE model responses w.r.t

parameters, large sample theory dictates

q̂ ∼ N (q0,Σ) where Σ =
{
Xq(q0)

T G−1Xq(q0)
}−1

.

Here G is the diagonal weighting matrix of the variances:(
σ2

1{x1
1}2, . . . , σ2

1{xN
1 }2; . . . ; σ2

3{x1
3}2, . . . , σ2

3{xN
3 }2

)
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Yields Standard Errors and Confidence Intervals

Standard errors for parameter component k are given by sk =
√

Σkk.

For large samples, a 95% confidence interval can be constructed for each

parameter component k:

[q∗k − 2sk, q
∗
k + 2sk]

• Given the estimation procedure, 95% of intervals constructed this way

will include the true value of the parameter qk.

• Requires sensitivity computations to determine Xq(t;q)
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Quantifying Uncertainty in Spline Coefficients

Rather than just x(ti;q), the least squares cost is based on

M ≡ E [
xs(t

i; q)|P ]
=

∫
Q

xs(t
i; q)f(q)dq ≈

∫
Q

xs(t
i; q)

NS∑
k=0

dkφk(q)dq

(linear in dk), so derivatives w.r.t parameters of interest (dk) yield exact

matrix entries

[Xq]ik =

[
∂M

∂dk

]
=

∫
Q

xs(t
i; q)φk(q)dq

• Can use same formulation from large sample theory above on the nodes dk,

but no need for sensitivity computations

• Unlike in single patient case, do not have good estimator for variance σ2
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Uncertainty in Estimating Spline Coefficients

Construct piecewise linear standard error bands using estimated

coefficients d∗
k and corresponding standard errors sk

f− =

NS∑
k=0

(d∗
k − 2sk)φk(q) ≤ f ∗ ≤

NS∑
k=0

(d∗
k + 2sk)φk(q) = f+

+f

−f

q2 q3 q4 q5 q6 q7q0 q1

f(q)

q
��
��
��
��

��
��
��
��

��

��
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��
��
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Strictly a Nodal Confidence Interval

f− =
NS∑
k=0

(d∗k − 2sk)φk(q) ≤ f∗ ≤
NS∑
k=0

(d∗k + 2sk)φk(q) = f+

• Not a functional confidence interval, but a nodal confidence

interval. 95% of intervals at nodes cover true nodal values – may or

may not cover actual underlying function.

+f
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• Perhaps compare to or extend ideas of Wahba, et.al., on CI for

smoothing splines to get true functional confidence bands.
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Nodal Confidence Intervals on Splines for viral clearance c
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Estimating each Patient Individually

Solve for each patient j,

q∗
j = arg min

q∈Qad

J(q) =
1

N

N∑
i=1

∣∣x(ti;q) − yij
∣∣2

• Used simulated data for 2048 patients; considered normal and bi-modal

distributions various parameters. Inverse problem solved with

Levenberg-Marquardt.

• Computationally intensive: several minutes per patient vs. several

seconds for estimating density

• However, gain understanding about each patient as well as

population
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Results: Estimating Parameter k1 per Patient
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Next: Results for Clinical Data

1. Overview of HIV infection

2. Data: clinical treatment interruption study

3. Modeling goals and ODE system

4. Inverse problem methods: single patient and distributed

5. Computational results with simulated data, use of regularization

6. Confidence intervals for estimates

7. Algorithm and preliminary results for clinical data

8. Summary and goals
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Methodology for Censored Clinical Data

• Recall: viral load assays have lower limit of quantification:

L = 400 or 50 cop/ml

• Need to quantify uncertainty about censored data, leveraging

knowledge that they are below detection limit (in [0, L])

• Still assume viral load V data yij
2 arise from model xij

2 (q), but when

below the limit of detection, assume data follow truncated distribution

1. Given an estimate q∗, for censored data points, calculate

E [
yij

2 |yij
2 < L

]
and E

[(
yij

2

)2 |yij
2 < L

]
use the former to replace censored data points and both to

update the estimator for variance σ̂2.

2. Solve the optimization problem to update q∗, return to 1. and

iterate until convergence.
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Sample Model Fits: On Treatment Data
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Estimate parameters d1, k1, d2, k2, δ, NT , c, using DIRECT algorithm as

implemented by Dan Finkel (NCSU).
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Sample Model Fit: STI (On/Off Treatment) Data

Estimate all parameters and initial conditions in two passes using DIRECT

algorithm, fine tuned with Matlab’s lsqnonlin
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Sample Model Fit: STI (On/Off Treatment) Data

Estimate all parameters and initial conditions in two passes using DIRECT

algorithm, fine tuned with Matlab’s lsqnonlin
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Summary and Goals

• Developed differential equation model with desired features to represent

data

• Fit data from study patients (on therapy and on STI) using censored

data algorithm; need to investigate other T-cell dynamics models, obtain

better fits to data

• Verified distribution estimation procedure on simulated data – can detect

different distributions – need to apply to clinical data sets

• Can construct nodal confidence bands; want to quantify

overparametrization and complete theory for functional CIs

• In context of density estimation, need means to handle: censored data,

estimate of error model variance
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Figure 4: E1(q): “unhealthy” locally asymptotically stable equilibrium point

with its domain of attraction N1(q); E2(q): “healthy” locally asymptotically

stable equilibrium point with its domain of attraction N2(q); (- - -) uncontrolled

trajectory; (—) controlled trajectory.
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Control results with “suboptimal” STI
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Figure 5: Phase plane plot of virus versus immune effectors (log scale) us-

ing “unhealthy” steady state as initial condition (T1(0) = 163573, T2(0) =

5, T ∗
1 (0) = 11945, T ∗

2 (0) = 46, V (0) = 63919 and E(0) = 24),

with suboptimal STI treatment. This plot demonstrates the interplay of im-

mune response and viral load during a dynamic transfer of the model be-

tween the “unhealthy” equilibrium (labeled Start) and “healthy” equilibrium

(labeled End), around which the solution oscillates.
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Typical Model Parameters

Ṫ1 = λ1 − d1T1 − (1 − ε1)k1VT1

Ṫ2 = λ2 − d2T2 − (1 − fε1)k2VT2

Ṫ∗
1 = (1 − ε1)k1VT1 − δT∗

1 − m1ET∗
1

Ṫ∗
2 = (1 − fε1)k2VT2 − δT∗

2 − m2ET∗
2

V̇ = (1 − ε2)NT δ(T∗
1 + T∗

2) − cV

− [(1 − ε1)ρ1k1T1 + (1 − fε1)ρ2k2T2]V

Ė = λE +
bE(T∗

1 + T∗
2)

(T∗
1 + T∗

2) + Kb
E − dE(T∗

1 + T∗
2)

(T∗
1 + T∗

2) + Kd
E − δEE

parameter value parameter value parameter value

λ1 10, 000 k2 1 × 10−4 ρ1 1

d1 0.01∗∗ δ 0.7∗ ρ2 1

ε1 ∈ [0, 1) m1 1.0 × 10−5 λE 1

ε2 ∈ [0, 1) m2 1.0 × 10−5 bE 0.3

k1 8.0 × 10−7 NT 100∗ Kb 100

λ2 31.98 c 13∗ dE 0.25

d2 0.01∗∗ Kd 500

f 0.34 (∈ [0, 1]) δE 0.1∗
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Sample Model Solution: Early Infection Scenario
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ODE (Initial Value Problem) Solver

System can be stiff, especially when computing sensitivity matrices. In all cases we

use stiff solvers based on numerical differentiation formulas (typically BDFs of order

1 to 5).)

• Matlab’s ODE15s (interpreted): used for development and most small

experiments

• CASC at LLNL’s LSODE (widely used Fortran code): used when MCMC group

needed fast model solutions in Matlab, wrote a Matlab MEX gateway to

interface directly with Matlab

• CASC at LLNL’s CVODE (based on VODE which is similar to LSODE, is

integrated into SUNDIALS package): used to quickly generate model solutions

(in parallel) for virtual patients and at nodes in estimating probability

distributions. (I wanted an excuse to learn MPI in C.)
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Optimization Algorithms

All in Matlab:

• Gauss-Newton gaussn.m and Levenberg-Marquardt levmar old.m

algorithms supplied by C.T. Kelley (NCSU) – both use line searches.

• Matlab’s quadprog: handles our bound constraints and linear equality

constraints, solves with SQP active set method.

• DIRECT as implemented by Dan Finkel (NCSU): Hyper-rectangle sampling

algorithm that iteratively samples the objective function at rectangle centers

and selectively divides potentially optimal rectangles. For use on bound

constrained problems.

• Matlab’s lsqnonlin: specifically for solving nonlinear least squares

problems – handles bound constraints and includes option of difference or

analytic derivatives. subspace trust region method and is based on an

interior-reflective Newton method.
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Simulated Data Generation Detail

• Have clinical data from patients corresponding to model states

x =

⎡
⎢⎣ T1 + T ∗

1

V

E

⎤
⎥⎦ (CD4 T-cells)

(free virions)

(CTL response)

• Verify methods on simulated data generated for times ti, i = 1, . . . , N :

yi
s = xs(t

i;q) + εi
s

and state s = 1, 2, 3, by taking yi
m = exp{zi

s} where

zi
s ∼ N (

log xi
s − log(σ2

s + 1)/2, log(σ2
s + 1)

)
, so

� Mean response given by ODE model: E(yi
s) = xi

s(q)

� Variance model: V ar(yi
s) = σ2

s (xi
s(q))

2

(constant coeff. of variation model – typical for blood draw assays)
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Theory for General Inverse Problem

P ∗ = arg min
P∈Q

J(P ) =
1

NP

NP∑
j=1

1

Nj

Nj∑
i=1

∣∣E [
x(tij;q)|P (q)

] − yij
∣∣2

• Problem assumes model parameters of interest q for each patient are

realizations of a random variable with probability distribution P .

• P belongs to a probability space Q ⊂ P(Q), where P(Q) denotes all

probability distributions on the admissible parameter space Q. For

example Q could be the set

� of normal distributions over Q, parameterized by N (µ, σ2)

� PM = {P =
∑M

k=0 pkδqk
}, where qk ∈ Q, pk ≥ 0,

∑M
k=0 pk = 1

(point masses – for inverse problem well-posedness results and examples in this

context: Banks and Bihari (2001), Banks and Potter (2003))
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Inverse Problem: Supporting Theory

Inverse problem: Minimize J(P ) over P ∈ Q ⊂ P(Q).

Banks and Bihari (2001) review: continuity of P → J(P ) in the Prohorov

ρ metric, with compactness of P(Q) in the ρ metric (guaranteed by Q

compact) is sufficient to establish a minimizer’s existence.
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Inverse Problem: Supporting Theory

Inverse problem: Minimize J(P ) over P ∈ Q ⊂ P(Q).

Banks and Bihari (2001) review: continuity of P → J(P ) in the Prohorov

ρ metric, with compactness of P(Q) in the ρ metric (guaranteed by Q

compact) is sufficient to establish a minimizer’s existence.

If distribution P characterized by its density: For F a weakly compact

subset of L2(Q), Q compact, define

PF(Q) := {P ∈ P(Q)|P ′ = f, f ∈ F}

Banks and Pinter (2004) showed PF(Q) is a compact subset of P(Q) in

the Prohorov metric. Hypotheses of Banks and Bihari (2001) are satisfied

and well-posedness of the inverse problem minimizing over P ∈ PF
(distributions with densities) follows.
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Quadratic Programming Problem Coefficients∫
Q

x(ti; q)f(q)dq ≈
NS−1∑
k=0

∆qk

2

(
xi(qk)dk + xi(qk+1)dk+1

)
So the minimization problem reduces to a quadratic programming

problem in coefficients dk, k = 0, . . . , NS :

(†) J(d) = dT Ad + 2bTd + c

where, for xi
s,k = xs(ti; qk),

Akl =
1

4N NP

N∑
i=1

NP∑
j=1

3∑
s=1

(
∆qkxi

s,k(qk) + ∆qk−1xi
s,k−1

) (
∆qlx

i
s,l + ∆ql−1xi

s,l−1

)

bk = − 1

2N NP

N∑
i=1

NP∑
j=1

3∑
s=1

yij
s

(
∆qkxi

s,k + ∆qk−1xi
s,k−1

)

c =
1

N NP

N∑
i=1

NP∑
j=1

3∑
s=1

(
yij

s

)2
.
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Estimated Parameters – On Treatment Data

parameter Patient 26 Patient 2

d1 8.9252e-03 1.3288e-02

k1 6.9104e-12 4.0266e-09

d2 4.3851e-02 4.5115e-03

δ 4.6416e-04 2.3462e-04

k2 5.9948e-02 5.0548e-02

NT 5.9948e+01 8.4319e+01

c 1.1860e+01 9.4473e+00

Initial conditions: T1 = 0.8*(Initial T-cell measurement), T ∗
1 = 0.2*(initial

T-cell measurement), V = initial viral load measurement. Other states fixed

at early infection scenario initial conditions.
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Estimated Parameters – STI Data
parameter Patient 25 Patient 5

T1 3.9354e+02 1.1304e+03

T2 2.7393e+02 2.6769e+00

T ∗
1 6.0904e+01 2.2896e+01

T ∗
2 4.6714e+02 1.4598e+01

V 1.4065e+06 1.0000e+06

E 1.1365e+00 1.1365e+02

parameter Patient 25 Patient 5

λ1 9.8624e+03 7.5516e+03

d1 2.0214e-02 1.2110e-02

ε 5.9414e-01 8.7025e-01

k1 6.5614e-08 1.2874e-07

λ2 3.1623e+02 3.1623e+01

d2 1.0000e-02 5.5048e-02

f 6.6834e+00 6.1423e+00

k2 1.2833e-05 1.7440e-04

δ 9.4523e-02 2.8256e-01

m1 4.6416e-05 1.0890e-06

m2 4.2622e-06 4.6416e-05

β 1.0000e+00 1.0000e+00

NT 9.7957e+01 1.0773e+02

c 1.0462e+01 8.6989e+00

bE 1.0000e-01 1.0000e-01

Kb 3.9137e+02 1.1860e+00

dE 2.1544e-02 2.1544e-02

Kd 2.3462e+00 5.9948e+03

δE 5.9948e-02 1.0000e-01

λE 5.5048e+00 3.9137e+00
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