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Abstract. We study SIR and SIS epidemic models with multiple pathogen
strains. In our models we assume total cross immunity, standard incidence,

and density-dependent host mortality. We derive conditions on the models
parameters which guarantee competitive exclusion between the n strains. An
example is given to show that if these conditions are not satisfied then co-

existence between the strains is possible. Furthermore, numerical results are
presented to indicate that our conditions on the parameters are sufficient but

not necessary for competitive exclusion.

1. Introduction. Epidemic models with multiple pathogen strains have received
considerable attention recently because of their importance in the evolution, per-
sistence, and treatment of diseases such as influenza, hantavirus, dengue fever,
HIV-AIDS, and other sexually transmitted diseases [3, 5, 7, 9, 10, 11, 16, 17, 22,
26, 27, 34]. There are many factors that contribute to the persistence or exclusion
of multiple pathogen strains. It has been shown in epidemic models with partial
cross immunity, coinfection, superinfection, and birth or mortality rates dependent
on the host population size that coexistence of several strains or exclusion of all
but one strain may occur (e.g., [1, 4, 5, 6, 8, 9, 10, 11, 12, 13, 16, 17, 19, 20, 21, 25,
26, 27, 28, 29, 30, 31, 32]).

It is the purpose of this investigation to study the effects of host demography
on competitive exclusion and coexistence of multiple pathogen strains and to ex-
tend some of the results in [1, 6, 8, 12, 28, 31] to n strains. In [1], we derived
conditions for exclusion of all but one strain in an SIR epidemic model with n
pathogen strains but we also showed that coexistence of more than one strain is
possible. However, the analysis in [1] was restricted to mass action incidence, βSI.
Here, we extend the results in [1] to SIS and SIR epidemic models with standard
incidence, βSI/N . It has been argued that standard incidence is more biologically
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reasonable than mass action for homogeneously mixing populations [14]. Other
forms for the incidence rate are discussed in [15, 23, 24]. In our models, total cross
immunity is assumed, that is, infection with one strain confers complete cross pro-
tection against infection by another strain. In addition, it is assumed that the host
population size satisfies a logistic-type growth function with a mortality rate that
depends on the population size. In an SIR epidemic model studied by Bremermann
and Thieme [8] with n strains, total cross immunity, and a birth rate dependent
on the total population size, coexistence of multiple strains does not occur. In
addition, in a two-sex, SIS model for sexually transmitted diseases with multiple
pathogen strains and no density-dependent birth or mortality, coexistence was not
possible [9]. However, when this model was extended to two genetically different
female groups, coexistence may occur [10, 11]. In other models with total cross
immunity, if the death rate instead of the birth rate depends on the population
size, then coexistence of more than one strain is possible. In the two-strain, SI
epidemic model studied by Andreasen and Pugliese [6], total cross immunity and
density-dependent mortality are assumed. They showed that coexistence of both
strains is possible. In the two-strain, SI epidemic models studied by Pugliese [31],
Castillo-Chavez and Velasco-Hernandez [12], and Mena-Lorca, Velasco-Hernandez,
and Castillo-Chavez [28], the impact of density-dependent mortality and superin-
fection on coexistence are studied. In these models, there are cases of competitive
exclusion and coexistence.

In the next section, the n−strain, SIR and SIS epidemic models are described.
In section 3, the competitive exclusion results are verified under some conditions on
the model parameters. In section 4, some numerical examples are presented to show
that the conditions imposed in section 3 on the model parameters are sufficient but
not necessary for competitive exclusion to occur. Furthermore, an example is given
where coexistence of more than one strain occurs. Finally, we give some concluding
remarks in section 5.

2. SIS and SIR Epidemic Models. Two basic epidemic models with n pathogen
strains are described. These models are based on a modification and extension of
the model described in [1]. In [1] an SIR epidemic model with mass action incidence
βSI was considered. Here we assume a standard incidence βSI/N . In addition,
we include models of SIS and SI type, where there is no immunity and possibly no
recovery. When the disease is not present the dynamics of the host population are
described by the following differential equation:

Ṅ(t) = Nf(N),

where Ṅ(t) = dN/dt. We make the same assumptions on f(N) that were used in
[1]:

(A1) f ∈ C1[0,∞).
(A2) 0 < f(0) < b.
(A3) f(N) is decreasing for N > 0.
(A4) There exists a constant K > 0 such that f(K) = 0.

Assumptions (A1)–(A4) lead to logistic-type growth. In the absence of infection,
solutions N(t) approach the carrying capacity K.

The SIR model consists of susceptible individuals, S, individuals infected with
strains 1 through n, Ij , j = 1, 2, . . . , n, and immune or removed individuals, R.
There is total cross immunity. Such types of models are applicable to diseases
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where infection with one strain confers immunity and protection against infection
by another strain. For example, in closely related strains of influenza, infection with
one strain may provide immunity to another strain. A compartmental diagram in
Figure 1 illustrates the relationship between the susceptible, infected, and removed
individuals. The SIR model with standard incidence has the form

Ṡ(t) = S

(

f(N)−

n
∑

k=1

βk
Ik
N

)

+

n
∑

k=1

bIk + bR

İj(t) = Ij

(

f(N)− b+ βj
S

N
− γj − µj

)

, j = 1, 2, . . . , n,

Ṙ(t) = R (f(N)− b) +

n
∑

k=1

γkIk

N = S +R+
n
∑

k=1

Ik.

(1)

In model (1), b is the per capita birth rate and f(N) is the per capita growth
rate. The per capita birth rate is constant but the per capita death rate is density-
dependent. If we let d(N) denote the density-dependent death rate, then f(N) =
b− d(N) and −d(N) = f(N)− b. Births and natural deaths are experienced by all
individuals, a reasonable assumption if the disease is prolonged. There is no vertical
transmission of the disease; all newborns are susceptible. Therefore, the birth rate
into the susceptible class is bN . The parameter βj denotes the transmission rate
for the jth strain, while γj is the recovery rate from infection with strain j. Finally,
µj represents the disease-related death rate for strain j. Note that by adding and
subtracting the term bS, the differential equation for S in (1) can be expressed as
follows:

Ṡ(t) = S

(

f(N)− b−

n
∑

k=1

βk
Ik
N

)

+ bN.

In an SIS epidemic model, there is no immunity, and therefore, no immune state
R. Infected individuals recover and return to the susceptible class at a rate γjIj
(see Figure 1). SIS epidemic models are applicable to sexually transmitted diseases.
An SIS epidemic model with n strains takes the form

Ṡ(t) = S

(

f(N)−

n
∑

k=1

βk
Ik
N

)

+

N
∑

k=1

(b+ γk)Ik

İj(t) = Ij

(

f(N)− b+ βj
S

N
− γj − µj

)

, j = 1, 2, . . . , n, (2)

N = S +

n
∑

k=1

Ik.

By adding and subtracting the term bS, the differential equation for S in (2) can
be expressed as follows:

Ṡ(t) = S

(

f(N)− b−
n
∑

k=1

βk
Ik
N

)

+
N
∑

k=1

γkIk + bN.

In an SI epidemic model, the differential equations are the same as in (2), except
that γj = 0 for j = 1, 2, . . . , n, because there is no recovery from infection. To
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             SIR                               bN

                      β1SI1/N                                    βnSIn/N

                                                        β2SI2/N

                                 γ1I1                  γ2I2                 γnIn

     S

       I1        I2        In

       R

             SIS                        bN

                    β1SI1/N                                     βnSIn/N

                                   γ2I2                 β2SI2/N
                            γ1I1                                          γnIn

       S

       In       I1        I2

Figure 1. Compartmental diagrams of the SIR and SIS epidemic
models with n strains. All flow rates are identified in the diagram
except for the death rates. The dotted arrows directed downward
from each compartment represent the death rates. The death rate
for class S is d(N)S, the death rate for class Ik is (d(N) + µk)Ik,
and the death rate for class R is d(N)R, where d(N) = b− f(N).
All newborns are susceptible.

include SI epidemic models in our analysis, we shall assume γj ≥ 0, j = 1, 2, . . . , n
for models (1) and (2). All other parameters are assumed to be positive, b, µj , and
βj , j = 1, 2, . . . , n.

In the presence of the disease, the population size N in models (1) and (2) is
described by the following differential equation:

Ṅ(t) = Nf(N)−

n
∑

j=1

µjIj . (3)

We assume that S(0) > 0, Ij(0) > 0, j = 1, 2, . . . , n, and for model (1), R(0) ≥ 0.
Clearly, solutions to (1) and (2) exist and are positive for t > 0. Furthermore, one
can easily deduce that solutions are bounded. In fact,

Ṅ(t) ≤ Nf(N),
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and since the solution u(t) to the differential equation u̇(t) = uf(u) with u(0) =
N(0) satisfies limt→∞ u(t) = K, it follows by comparison that lim supt→∞N(t) ≤
K. Therefore, for model (1), 0 ≤ lim supt→∞[S(t) +

∑n
k=1 Ik(t) + R(t)] ≤ K and

for model (2), lim supt→∞[S(t) +
∑n

k=1 Ik(t)] ≤ K. We make one more additional
assumption on f so that total population extinction does not occur:

(A5) f(0) > maxj{µj} = µ̄ > 0.

The competitive exclusion result is verified in the next section for the basic models
(1) and (2).

3. Competitive Exclusion. Let cj = b+γj +µj > f(0) for j = 1, 2, . . . , n. Then
the basic reproduction number for strain j is given by

Rj =
βj
cj

, j = 1, 2, . . . , n. (4)

We define

Bj =
βj

cj − f(0)
, j = 1, 2, . . . , n. (5)

It is straightforward to show that the basic reproduction number for models (1)
and (2) with n strains is given by

R0 = max
j
{Rj}

(see e.g., [33]). When R0 < 1, then the disease-free equilibrium (DFE), where
S = K, is locally asymptotically stable and when R0 > 1, the DFE is unstable.
The parameter Bj is related to the basic reproduction number for strain j. Since
f(0) = b− d(0), then cj − f(0) = d(0) + γj + µj and

Bj =
βj

d(0) + µj + γj
.

We assume that for each j = 2, . . . , n, one of the following two sets of conditions
holds:

R1 > Rj and cj ≥ c1. (6)

B1 > Bj and β1 ≥ βj . (7)

Assumption (6) and the definition of R0 implies that R1 is the basic reproduction
number for models (1) and (2).

We begin by defining s = S
N
, ij =

Ij
N
, and r = R

N
. Then the proportional

functions s, ij and r for model (1) satisfy s + r +
∑n

k=1 ik = 1 and the following
system of differential equations:

ṡ = s

n
∑

k=1

(µk − βk)ik +

n
∑

k=1

bik + br

i̇j = ij

(

βjs+
n
∑

k=1

µkik − cj

)

, j = 1, 2, . . . , n,

ṙ = r

(

n
∑

k=1

µkik − b

)

+

n
∑

k=1

γkik.

(8)
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For model (2) the differential equations for the proportions satisfy

ṡ = s

n
∑

k=1

(µk − βk)ik +

n
∑

k=1

(b+ γk)ik

i̇j = ij

(

βjs+

n
∑

k=1

µkik − cj

)

, j = 1, 2, . . . , n,

(9)

where s+
∑n

k=1 ik = 1.
Now we prove that the functions s(t) and N(t) are bounded below by a positive

constant for all t ≥ 0. Hence, complete extinction is not possible.

Lemma 3.1. Assume (A1)–(A5) hold. Then, in models (1) and (2), there exist
positive constants s and N such that s(t) ≥ s and N(t) ≥ N for t ∈ [0,∞).

Proof. Suppose there does not exist such constants s and N . Then there exist
monotone sequences of positive numbers

{

εil
}∞

l=1
and

{

til
}∞

l=1
, i = 1, 2, satisfying

liml→∞ εil = 0 and liml→∞ til = ∞ for i = 1, 2 such that s(t1l ) = ε1l > 0 and

ṡ(t1l ) ≤ 0, N(t2l ) = ε2l > 0 and Ṅ(t2l ) ≤ 0.
For sufficiently large t1l we have from (8)

0 ≥ ṡ(t1l ) ≥
n
∑

k=1

(b− βks(t
1
l ))ik(t

1
l ) =

n
∑

k=1

ik(t
1
l )[b− ε1l βk] > 0,

and from (9)

0 ≥ ṡ(t1l ) ≥

n
∑

k=1

ik(t
1
l )[b+ γk − ε1l βk] > 0,

a contradiction. This establishes the result for s.
For sufficiently large t2l , applying assumption (A5), we have

0 ≥ Ṅ(t2l ) = ε2l

(

f(ε2l )−

n
∑

k=1

µkik(t
2
l )

)

≥ ε2l (f(ε
2
l )− µ̄) > 0,

a contradiction.

It follows from Lemma 3.1 that for sufficiently large time t, there exists an ε > 0
such that

0 < N − ε < N(t) < K + ε.

Next we show that all of the strains, except possibly one, die out.

Theorem 3.1. Assume (A1)–(A5) hold. In addition, assume that for each j =
2, . . . , n, either the condition (6) or (7) holds. Then, in models (1) and (2),

lim
t→∞

Ij(t) = 0 for j = 2, 3, . . . , n.
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Proof. Choose a j ∈ {2, . . . , n} and suppose that condition (6) holds for this j.

Define Γ1(t) =
i

1
cj
j

i

1
c1
1

. Then, for t > 0

d

dt
Γ1(t) =

1
cj
i

1
cj

j

(

βjs+

n
∑

k=1

µkik − cj

)

i
1
c1

1 − 1
c1
i

1
c1

1

(

β1s+

n
∑

k=1

µkik − c1

)

i
1
cj

j

i
2
c1

1

=
1

cj
Γ1(t)

(

βjs+
n
∑

k=1

µkik − cj

)

−
1

c1
Γ1(t)

(

β1s+
n
∑

k=1

µkik − c1

)

= Γ1(t)

(∑n
k=1 µkik
cj

−

∑n
k=1 µkik
c1

+

(

βj
cj
−

β1

c1

)

s

)

≤ Γ1(t)

(

βj
cj
−

β1

c1

)

s.

This latter inequality implies that

Γ1(t) ≤ Γ1(0)e

(

βj
cj
−

β1
c1

)

s t
.

Thus,

i
1
cj

j (t) ≤ i
1
c1

1 (t)Γ1(0)e

(

βj
cj
−

β1
c1

)

s t
.

Since i1 is bounded, s > 0, and
(

βj
cj
− β1

c1

)

< 0 we have limt→∞ ij(t) = 0. Because

Ij(t) = ij(t)N(t) ≤ ij(t)(K+ε) for t sufficiently large it follows that limt→∞ Ij(t) =
0. Note that we did not use assumption (A5).

Now suppose that for the same j, condition (7) holds. Define Γ2(t) =
I

1
βj
j

I

1
β1
1

. Using

assumption (A3) and a similar technique as in [1] we show that for all t > 0

d

dt
Γ2(t) = Γ2(t)

(

f(N)

βj
−

f(N)

β1
+

(

c1
β1
−

cj
βj

))

≤ Γ2(t)

(

c1 − f (0)

β1
−

cj − f (0)

βj

)

.

Hence, using (7) we get limt→∞ Ij(t) = 0. By (A5) and Lemma 3.1, Ij(t) =
ij(t)N(t) ≥ ij(t)(N − ε) > 0, so that for t sufficiently large, limt→∞ ij(t) = 0.

We have proved that under the conditions (6) or (7) the pathogen strains with
suboptimal reproduction numbers Rj or Bj , j = 2, 3, . . . , n die out, but we did not
show whether the disease persists. This will depend on the reproduction number
R1. The next result proves that if R1 > 1, then the disease persists.

Theorem 3.2. Assume (A1)–(A5) hold. In addition, assume that for each j =
2, . . . , n, either (6) or (7) holds and R1 > 1. Then, in models (1) and (2),

lim inf
t→∞

I1(t) > 0.

Proof. Assume that I1(t) → 0 as t → ∞. Then limt→∞ i1(t) = 0 and using the
previous result we have that

∑n
k=1 µkik(t) → 0. Hence, limt→∞N(t) = K. Also,

in model (1), limt→∞R(t) = 0 and limt→∞ s(t) = 1. From the i1 equation in (8)
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or (9) it follows that i̇1(t)
i1(t)

→ β1 − c1 > 0 which says that i1(t) grows exponentially

as t→∞. This contradiction implies

lim sup
t→∞

I1(t) ≥ ε̄ > 0.

Now assume that lim inf t→∞ I1(t) = 0. This implies lim inf t→∞ i1(t) = 0. Then for
any 0 < ε < ε̄ there exists two increasing sequences tm, τm → ∞ as m → ∞ such
that

i1(tm) = ε, i1(tm + τm) =
ε

m
,

ε

m
≤ i1(t) ≤ ε, tm ≤ t ≤ tm + τm.

For any 0 < δ < 1 we can choose ε > 0 small enough such that the following two
inequalities hold for tm ≤ t ≤ tm + τm and m sufficiently large:

n
∑

k=1

ik(t) ≤ δ (10)

δ

(

n
∑

k=1

µkik(t)− b

)

+

n
∑

k=1

γkik(t) ≤ −
bδ

2
. (11)

These inequalities are a consequence of the choice of ε, where on the subintervals,
[tm, tm + τm], the summations with ik(t) are sufficiently small.

Define

τ =
2(1− δ)

bδ
. (12)

Then choose m large enough so that τm > τ and the inequalities (10) and (11) are
satisfied. We will now show that

r(t) ≤ δ, tm + τ ≤ t ≤ tm + τm. (13)

Note that
∑n

k=1 µkik(t) − b ≤ −b/2 from inequality (11). Therefore, from the r
equation in (8) and inequality (11) we have for any tm < t ≤ tm + τm satisfying
r(t) ≥ δ,

ṙ(t) ≤ −
bδ

2
. (14)

If r(tm) ≤ δ, then r(t) ≤ δ for tm ≤ t ≤ tm + τm. If not, there exists a time
tm < τ1 ≤ tm + τm such that r(τ1) > δ and ṙ(τ1) > 0 which contradicts (14).
Suppose that r(tm) > δ. Then using (14) there exists a τ2 > tm such that r(t) > δ
for all t ∈ (tm, τ2) and r(τ2) = δ. Consider the differential equation

ż(t) = −
bδ

2
, t > tm

z(tm) = 1.

Integrating this differential equation we get z(t) = 1− bδ(t− tm)/2. Therefore, for
τ defined by (12), z(tm + τ) = δ. Because r satisfies (14) and r(tm) ≤ 1 it follows
that τ2 ≤ τ . Using the facts that r(τ2) = δ and τ2 ≤ τ and applying the previous
argument, we get that r(t) ≤ δ for all tm + τ ≤ t ≤ tm + τm. This proves (13).

From (10)–(13) it follows that s in (8) satisfies

s(t) = 1− r(t)−

n
∑

k=1

ik(t) ≥ 1− 2δ, tm + τ ≤ t ≤ tm + τm
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and s in (9) satisfies

s(t) = 1−

n
∑

k=1

ik(t) ≥ 1− δ > 1− 2δ, tm + τ ≤ t ≤ tm + τm.

Now, choose δ > 0 small enough such that

β1(1− 2δ)− c1 = η > 0. (15)

Note that the expression on the left-hand side of (15) is positive because it can be
made sufficiently close to β1 − c1 > 0. Then from the i1 equation in (8) or (9) we
get

ε ≥ i1(tm + τm) = i1(tm)e
∫

tm+τ

tm
(β1s+

∑n
k=1

µkik−c1)dte
∫

tm+τm
tm+τ (β1s+

∑n
k=1

µkik−c1)dt

≥ i1(tm)e−c1τeη(τm−τ),

a contradiction, since τm →∞.

The next result shows that if for each j = 2, . . . , n, either (6) or (7) are satisfied
but R1 < 1, then solutions approach the DFE; the DFE is globally asymptotically
stable.

Theorem 3.3. Assume (A1)–(A5) hold. In addition, assume that for each j =
2, . . . , n, either the condition (6) or (7) holds and R1 < 1. Then, in models (1)
and (2),

lim
t→∞

(S(t),

n
∑

j=1

Ij(t)) = (K, 0).

Proof. From the i1 equation in (8) we have

i̇1 = i1

(

β1s− c1 + µ1i1 +

n
∑

k=2

µkik

)

. (16)

Note that since s(t) ≥ s, then there exists a δ > 0 such that 0 < i1(t) ≤ 1−δ. Hence,
it follows in a similar manner as the proof of Theorem 4 in [1] that limt→∞ i1(t) = 0.
Because I1(t) ≤ i1(t)(K+ε) for t sufficiently large, it follows that limt→∞ I1(t) = 0.
Thus, in model (1), limt→∞R(t) = 0, and in models (1) and (2), limt→∞ S(t) =
K.

The condition (A5) that prevents total population extinction can be weakened
for some special cases of Theorems 3.2 and 3.3 as follows:

(A5)′ f(0) > µ1.

If the assumptions (A1)–(A4) are satisfied, and the condition (6) holds for j =
2, . . . , n, then it follows from Theorem 3.1 that limt→∞ ij(t) = 0 for j = 2, . . . , n.
In this case assumption (A5) is not needed and we obtain the following result.

Corollary 3.1. Assume (A1)–(A4) hold.

(i) If condition (6) holds for j = 2, . . . , n and R1 < 1. Then, in models (1) and
(2), lim

t→∞
(S(t),

∑n
j=1 Ij(t)) = (K, 0).

(ii) If (A5)′ holds, the condition (6) is satisfied for j = 2, . . . , n, and R1 > 1.
Then, in models (1) and (2), lim inf

t→∞
I1(t) > 0.
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Proof. Under the assumptions in part (i), the proofs of Theorems 3.1 and 3.3 show
that

lim
t→∞

n
∑

j=1

µjij(t) = 0.

Then, for any ε > 0, there exists a time T such that for t > T

N(f(N)− ε) ≤ Ṅ ≤ Nf(N).

By comparison, it follows that limt→∞N(t) = K and the conclusion of part (i)
follows.

To prove part (ii), it is necessary to show that total population extinction can-
not occur. Because limt→∞ ij(t) = 0 for j = 2, . . . , n (Theorem 3.1), choose ε
sufficiently small and T sufficiently large such that for t > T ,

n
∑

j=2

µjij(t) < ε < f(0)− µ1.

Then for t > T ,
Ṅ ≥ N(f(N)− µ1 − ε).

It follows as in the proof of Lemma 3.1 that there exists N > 0 such that N(t) >
N for all t ≥ 0. Now the proof of part (ii) follows directly from the proof of
Theorem 3.2.

4. Numerical Examples. We consider two strains, n = 2. The initial conditions
S(0) = 1, Ij(0) = 1, R(0) = 0 are used in all the figures presented in this section.
The first example demonstrates that if neither conditions (6) nor (7) are satisfied,
there may be coexistence of both strains. We make some hypothetical but reason-
able assumptions regarding the model parameters. Let f(N) = r(1−N/K), where
the carrying capacity is K = 100 and intrinsic growth rate is r = 5. Suppose the
birth rate b = 6 and the transmission, recovery, and disease-related death rates
for the two strains are β1 = 30, β2 = 15, γ1 = 6, γ2 = 1, µ1 = 4, and µ2 = 1.4.
Because of the high birth rate, the time unit for the progression of human diseases
(e.g., sexually transmitted disease) may be decades. However, for animal diseases
(e.g., hantavirus in rodents), the time unit may be years. Both strains are easily
transmissible (large βj) but the first strain has a greater transmission, recovery, and
death rate than the second strain. Assumptions (A1)–(A5) hold. In this example,
the reproduction number R1 = 1.875 > 1.786 = R2 but c1 = 16 > 8.4 = c2. Be-
cause Rj > 1, j = 1, 2, a single strain could persist in the population in the absence
of other competing strains. The parameters B1 = 2.727 < 4.412 = B2 but β1 > β2.
Neither conditions (6) nor (7) are satisfied. In model (1), there is a locally stable
coexistence equilibrium at Ī1 = 12.605 and Ī2 = 11.986 (Figure 2 (a)). In model
(2), there is a locally stable coexistence equilibrium at Ī1 = 3.532 and Ī2 = 37.908
(Figure 2 (b)).

Suppose strain 2 becomes more virulent, so that the disease-related death rate
due to strain 2 increases to µ2 = 2.2. All of the other parameters remain the same
as in Figure 2. In this case, the equilibrium with strain 1 positive and strain 2 zero
changes from unstable to stable in models (1) and (2) (see Figure 3). Eventually
there are no individuals infected with strain 2; strain 1 is dominant. Now, suppose
strain 2 becomes less virulent, so that the disease-related death rate due to strain
2 decreases to µ2 = 1.1. Then the equilibrium with strain 2 positive and strain
1 zero changes from unstable to stable in models (1) and (2). Eventually, there
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Figure 2. Coexistence in models (1) and (2) when conditions (6)
and (7) are not satisfied. Figure (a) represents the results of model
(1) while figure (b) represents the results of model (2).

are no individuals infected with strain 1; strain 2 is dominant. The numerical
simulations indicate that the equilibria in these latter two examples are globally
stable; coexistence does not occur. It is interesting to note that in these examples
R1 > R2 > 1 but neither conditions (6) nor (7) are satisfied. Therefore, conditions
(6) or (7) are sufficient but not necessary for competitive exclusion to occur.

Epidemic models with standard incidence can result in total population extinc-
tion, N(t)→ 0 (see e.g., [2]). Suppose the two strains have transmission, recovery,
and disease-related death rates similar in magnitude to the previous examples, that
is, β1 = 30, β2 = 15, γ1 = 2, γ2 = 1, µ1 = 5, and µ2 = 2. The first strain has higher
transmission, recovery, and disease-related death rates than the second strain. We
assume that the birth rate b is the same as in the previous examples, b = 6. How-
ever, the natural death rate, b−f(N), is much greater, f(N) = r(1−N/K), where
r = 2 and K = 100. In this example, condition (7) is satisfied, but not condition
(6), B1 = 2.727 > 2.143 = B2 and β1 = 30 > 15 = β2; R1 = 2.308 > 1.667 = R2

and c2 = 9 < 13 = c1. In addition, neither conditions (A5) nor (A5)′ are satisfied.
For these parameter values, occurrence of an epidemic causes total population ex-
tinction. The growth rate f(0) = r = 2 is too small to sustain the population at
low population levels when the disease-related death rate is large, µ1 = 5. How-
ever, it is interesting to note that the infected proportion i1 persists but not i2;
i1(t) → 0.4208 and i2(t) → 0 in model (1) while in model (2) i1(t) → 0.6461 and
i2(t)→ 0 (see Figure 4).

5. Concluding Remarks. In models (1) and (2), the host population size is reg-
ulated by two different factors. When disease is absent, the population size is
regulated by natural mortality, b − f(N), which depends on the population size
N . When disease is present, there is an additional mortality factor due to disease-
related deaths, µj , which also depends on the host population size through the
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Figure 3. Competitive exclusion when conditions (6) and (7) are
not satisfied. Figure (a) represents the results of model (1) while
figure (b) represents the results of model (2).
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Figure 4. Extinction of the total population N when conditions
(A5) and (A5)′ are not satisfied. Figure (a) represents the results
of model (1) while figure (b) represents the results of model (2).

transmission rate [6, 18]. Because these two mortality factors affect the dynamics
of the host population size in different ways, their combination may change the
outcome of competition [6]. We have shown in models (1) and (2) and it has been
demonstrated in other models with disease-related deaths and density-dependent
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natural mortality that there are cases where competitive exclusion of all but one
strain or where coexistence of more than one strain may occur [1, 6, 12, 28, 31].

We conclude with two final remarks. First, when Rj > 1, it is straightforward
to show that an equilibrium exists with a single strain j in the SIS epidemic model.
In fact, the proportional equilibrium values s̄ and īj satisfy

s̄ =
b+ γj
βj − µj

and īj =
βj − cj
βj − µj

.

The equilibrium values S̄ = s̄N̄ and Īj = ījN̄ , where N̄ is the unique solution to
f(N̄) = µj īj . It is possible that many other equilibria exist with one or more strains
present. However, the results of the theorems and the numerical examples show
that these various equilibria may not be stable. Second, the theoretical results can
be generalized to the case where there is some vertical transmission of strain j as
in [1]. If the birth rate of the jth infected class is divided into two parts: bj > 0,
denoting those born susceptible, and b− bj ≥ 0 denoting those born infected, then
the theoretical results apply with Rj and Bj given by (4) and (5), respectively.
However, with vertical transmission Rj is not the basic reproduction number for
strain j. The basic reproduction number in the case of vertical transmission is given
by

βj + b− bj
cj

.

An equilibrium stability analysis is presented in [3] for an SIS epidemic model
similar to (2) but with two strains, where one strain is transmitted vertically and
the other horizontally.
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