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In this paper we discuss the asymptotic behavior of a logistic model with distributed
growth and mortality rates. In particular, we prove that the entire population becomes
concentrated within the subpopulation with highest growth to mortality ratio, and con-
verges to the equilibrium defined by this ratio. Finally, we present a numerical example
illustrating the theoretical results.

1. Introduction

Modeling population dynamics often involves balancing the competing requirements

of realism and simplicity. On the side of simplicity, we have the classical Kolmogorov

models, which have been extensively studied for decades. Since such models treat

all individuals as identical, they cannot be expected to provide an adequate repre-

sentation of the dynamics of most biological populations, unless they are modified

in such a way to allow for different individuals or subpopulations to have different

growth or mortality rates. On the side of realism, we have individual based models,

which often involve rather complex and computationally intensive simulations. In

recent years, several researchers have focused on generalizing Kolmogorov popu-

lation models, as well as Sinko–Streifer population models, to allow for rates to

vary across individuals (see Ackleh,1 Banks et al.,4,6 Banks and Fitzpatrick,5 and

Fitzpatrick10). In this paper, we are interested in the asymptotic behavior of a gen-

eralization of the classical logistic population model, a generalization that allows

for individuals or subpopulations to have different growth and mortality rates.
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The original model is given by:
dX(t)

dt
= X(t)[q1 − q2X(t)] ,

X(0) = X0 .

(1.1)

In (1.1), X(t) denotes the total population at time t. The parameters q1 and q2 are

the fixed growth and mortality rates, respectively. Note that these two parameters

are meant to represent properties of all individuals in the population. In order to

incorporate differences among individual growth and mortality, we must alter the

model.

We begin by assuming that the population is divided into subpopulations having

growth and mortality parameters q = (q1, q2) lying in the set Q = [a1, b1]× [a2, b2],

where a1, a2, b1, b2 ∈ R+. Note that the point q∗ = (b1, a2) gives the subpopula-

tion with the highest growth to mortality ratio. This subpopulation will play an

important role in the asymptotic behavior of our model. The model is constructed

using subpopulation densities as state variables: we denote by x(t, q) the density of

individuals at time t having parameter q. Hence, for any subset Q̂ ⊂ Q, the part of

the population having parameters q ∈ Q̂ is given by∫
Q̂

x(t, q) dq .

Following Ackleh1 we assume that growth is subpopulation specific, while mor-

tality is driven by interaction with the entire population. This leads to the following

generalized logistic model, which is the topic of study in this paper:
dx(t, q)

dt
= x(t, q)[q1 − q2X(t)] ,

x(0, q) = x0(q) ,

(1.2)

where X(t) =
∫
Q
x(t, q) dq is the total population at time t ≥ 0. For more details

on this approach of generalizing classical Kolmogorov population models we refer

the reader to the papers by Ackleh1 or Banks et al.6 In the paper by Ackleh1 the

existence, uniqueness, and non-negativity of global solutions x ∈ C1([0,∞);C(Q))

were established for a broad class of community models, including (1.2); this was

done using the theory of differential equations in abstract spaces discussed in Ladas

and Lakshmikantham.11

Our paper is organized as follows. In Sec. 2, we determine the asymptotic be-

havior of solutions of system (1.2). There it is shown that for non-negative initial

conditions x0(q) ∈ C(Q), x0(q∗) 6= 0, the population density evolves in time so

that the entire surviving population becomes concentrated (in the limit) at q∗.

This is survival of the fittest, where the “fittest” are those from the subpopulation

possessing the characteristic q∗ (that maximizes the growth to mortality ratio for

the parameter space). In Sec. 3 we present numerical results to illustrate this evolu-

tion. Section 4 is devoted to conclusions and possible directions for future research.
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2. Asymptotic Behavior of the Generalized Model

The basic idea behind the main result of this paper is that x(t, q) → cδq∗(q) as

t→∞, where δq∗ denotes the Dirac delta function concentrated at q∗. The constant

c turns out to be the ratio b1/a2. In order to make the statement mathematically

rigorous, we rely on the theory of weak convergence of probability measures. Thus,

we begin by normalizing the density x(t, q).

For any Borel subset E of Q, define the set function Pt via:

Pt(E) =

∫
E
x(t, q) dq∫

Q
x(t, q) dq

=
1

X(t)

∫
E

x(t, q) dq .

Then Pt is a probability measure on (Q,B), where B is the σ-field whose elements

are the Borel subsets of the parameter space Q. Note that for each time t, we get a

different probability measure Pt. We are concerned with the limiting behavior of Pt
as t→∞. This limit will be discussed in terms of weak convergence of probability

measures. The pertinent results from that general theory we state next for conve-

nience; a thorough discussion of this material can be found in Ash,3 Billingsley,7,8

and Ethier and Kurtz.9

Let S be a complete separable metric space with metric d. Denote by P(S) the

space of probability measures on the Borel subsets of S. For any closed set F in S

and ε > 0, define

Fε =

{
x ∈ S : inf

y∈F
d(x, y) < ε

}
.

Clearly F ⊂ Fε. Also, if P1, P2 ∈ P(S), put

ρ(P1, P2) = inf{ε > 0 : P1[F ] ≤ P2[Fε] + ε, for all closed F ∈ S} .
It is known that ρ is a metric on P(S), and that P(S) is a complete metric space

under ρ. Furthermore, if S is compact, then P(S) is also compact. The following

theorem characterizes the weak convergence of probability measures with respect

to the metric ρ (see, e.g. Ethier and Kurtz,9 p. 108).

Theorem 2.1. Let (S, d) be a metric space that is both separable and complete. Let

Pn ⊂ P(S), P ∈ P(S). Then, the following are equivalent:

(a) ρ(Pn, P )→ 0, as n→∞;

(b)
∫
S
f dPn →

∫
S
f dP, for all bounded, uniformly continuous, real-valued func-

tions f on S;

(c) Pn[D]→ P [D], for all Borel sets D with P [∂D] = 0.

Note that this theorem implies that convergence under the metric ρ is equivalent

to convergence in distribution. We stated above that the population density, i.e. the

solution of (1.2), evolves in such a way as to make the entire population become

concentrated at the characteristic q∗, as t → ∞. We are now ready to state our

goal rigorously: show that limt→∞ Pt = δq∗ , where the limit is taken in the metric

ρ. By Theorem 2.1 this is equivalent to the following theorem.
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Theorem 2.2. For every continuous real-valued function f defined on Q,

lim
t→∞

∣∣∣∣∫
Q

f(q) dPt − f(q∗)

∣∣∣∣ = 0 .

Our proof makes use of two lemmas, the first of which concerns the boundedness

and strict positivity of the total population.

Lemma 2.3. If x(t, q) is a solution of system (1.2) with non-negative initial con-

ditions x(0, q) ∈ C(Q) such that x(0, q∗) > 0, then the total population is bounded

and strictly positive, i.e. there exist m, M > 0 such that ∀ t ≥ 0, m ≤ X(t) ≤M.

Proof. Note that x(t, q) and d
dtx(t, q) are continuous in t and q. So we obtain

d

dt
X(t) =

∫
Q

x(t, q)[q1 − q2X(t)] dq . (2.1)

Suppose X(0) > 2b1/a2, where b1 and a2 are the growth and mortality parame-

ters for q∗. SinceX is continuous, there exists a time T > 0 such thatX(t) > 2b1/a2,

∀ t ∈ [0, T ). Then, for such t,

q1 − q2X(t) < q1 − q2
(

2b1
a2

)
≤ q1 − 2b1 ≤ −b1 .

Using this, together with (2.1) and the non-negativity of x(t, q), we obtain

d

dt
X(t) ≤ −b1

∫
Q

x(t, q) dq = −b1X(t) . (2.2)

Consequently X(t) ≤ X(0) exp(−b1t), for all t ∈ [0, T ). If T =∞, then clearly X(0)

is an upper bound ∀ t ≥ 0. Suppose T is finite. By continuity, X(T ) = 2b1/a2, and

it is clear that X will never again exceed this value. In fact, if X exceeds 2b1/a2

at some time beyond T , then the continuity of X implies the existence of times

τ1 ≥ T and τ2 > τ1 such that X(τ1) = 2b1/a2, and X(t) > 2b1/a2, ∀ t ∈ (τ1, τ2].

The mean value theorem then assures the existence of at least one time t′ ∈ (τ1, τ2)

such that dX(t)
dt

∣∣
t=t′

> 0, contrary to prior argument. On the other hand, if 0 <

X(0) ≤ 2b1/a2, then arguing as above one can show that 2b1/a2 is an upper bound

for X(t), ∀ t ≥ 0. Hence, M = max{2b1/a2,X(0)} is an upper bound for X(t),

∀ t ≥ 0.

To obtain a strictly positive lower bound, suppose that 0 < X(0) < a1/(2b2).

An argument similar to the one above, but using the inequalities

q1 − q2X(t) > q1 − q2
(
a1

2b2

)
≥ q1 −

a1

2
≥ a1

2
, t ∈ [0, T ′)

and

d

dt
X(t) ≥ a1

2

∫
Q

x(t, q) dq =
a1

2
X(t) , t ∈ [0, T ′) ,
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for some T ′ > 0, shows that X(t) ≥ X(0), ∀ t ≥ 0. Also, if X(0) ≥ a1/(2b2),

then X(t) ≥ a1/(2b2), ∀ t ≥ 0. Then m = min{a1/(2b2),X(0)} is a positive lower

bound.

We next prove that the population over all the parameter spaces Q, except for

an arbitrarily small ball centered at q∗, goes to zero as t → ∞. In the proof we

assume, without loss of generality, that q1 ≥ 1. If this is not the case, then choose a

constant E such that q1/E ≥ 1 and rescale the model (1.2) in the following manner:
dx(t, q)

dt
= Ex(t, q)[q̄1 − q̄2X(t)] ,

x(0, q) = x0(q) ,

(2.3)

with q̄i = qi/E, i = 1, 2. Then one can easily verify that the results of this section

hold true for the rescaled system (2.3). Using the assumption that q1 ≥ 1, together

with Young’s inequality, we obtain the boundedness of
∫
Q
x1/q1(t, q) dq from the

boundedness of X(t).

Lemma 2.4. Let 0 < δ < min{b1 − a1, b2 − a2}. Let Bδ be the intersection of Q

with the ball of radius δ centered at q∗. Then
∫
Q\Bδ x(t, q) dq → 0, as t→∞.

Proof. Once δ > 0 is given, distinct lines L1 and L2 can be chosen to separate

Q into the regions A, B and C, as shown in Fig. 1. Note that Q\Bδ ⊂ A. Since

L1 passes through the origin, every point q on L1 has the same ratio q1/q2. This

property holds for L2 as well. Note that for any point p = (p1, p2) ∈ A and any

point q = (q1, q2) ∈ C, we have p2/p1 > q2/q1.

Let r(t) = x1/p1(t,p)

x1/q1(t,q)
, where p is any fixed point in A and q is any point in region

C. Then

d

dt
r(t) =

x1/q1(t, q)

x2/q1(t, q)

(
1

p1
x1/p1−1(t, p)x(t, p)(p1 − p2X(t))

)

− x1/p1(t, p)

x2/q1(t, q)

(
1

q1
x1/q1−1(t, q)x(t, q)(q1 − q2X(t))

)

=

(
q2

q1
− p2

p1

)
X(t)r(t) .

Since q ∈ C and p ∈ A, the quantity (q2/q1 − p2/p1) is negative. So we have a first

order ordinary differential equation in r(t) whose solution satisfies:

r(t) ≤ K exp

(
−λ
∫ t

0

X(ξ) dξ

)
,

where

K = sup
p∈A,q∈C

x1/p1(0, p)

x1/q1(0, q)
and − λ = sup

p∈A,q∈C

(
q2

q1
− p2

p1

)
.
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Fig. 1. Regions for Lemma 2.4.

If m > 0 is the lower bound for X(t) established in Lemma 2.3, then r(t) ≤
K exp(−λmt). That is,

x1/p1(t, p) ≤ K exp(−λmt)x1/q1(t, q) .

Since x(t, q) is non-negative, for fixed p ∈ A we have:∫
C

x1/p1(t, p) dq = x1/p1(t, p)µ(C) ≤ Ke−λmt
∫
C

x1/q1(t, q) dq ,

where µ is Lebesgue measure on R2. Since µ(C) > 0, we have

x1/p1(t, p) ≤ Ke−λmt

µ(C)

∫
C

x1/q1(t, q) dq .

The integral on the right-hand side of the inequality is bounded. Since the right-

hand side is independent of p, we see that x1/p1(t, p)→ 0 uniformly on A as t→∞.

Since p1 is an element of a bounded interval, we also have x(t, p)→ 0 uniformly on

A as t→∞. So ∫
Q\Bδ

x(t, q) dq ≤
∫
A

x(t, q) dq → 0 as t→∞ .

Now that we have established the requisite lemmas, we prove the main theorem.

Proof of Theorem 2.2. Let ε > 0. Then∣∣∣∣∣
∫
Q
f(q)x(t, q) dq

X(t)
− f(q∗)

∣∣∣∣∣
≤ 1

X(t)

{∣∣∣∣∫
Bδ

(f(q)− f(q∗))x(t, q) dq

∣∣∣∣
+

∣∣∣∣∣
∫
Q\Bδ

f(q)x(t, q) dq

∣∣∣∣∣+

∣∣∣∣f(q∗)

(∫
Bδ

x(t, q) dq −X(t)

)∣∣∣∣
}
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≤ 1

m

{∣∣∣∣∫
Bδ

(f(q)− f(q∗))x(t, q) dq

∣∣∣∣
+

∣∣∣∣∣
∫
Q\Bδ

f(q)x(t, q) dq

∣∣∣∣∣+

∣∣∣∣f(q∗)

(∫
Bδ

x(t, q) dq −X(t)

)∣∣∣∣
}

= I + II + III ,

where m is the lower bound for the total population established in Lemma 2.3.

Let M be the upper bound for the total population established in Lemma 2.3. By

continuity of f , we may choose δ small enough so that |f(q) − f(q∗)| < εm/3M ,

∀ q ∈ Bδ. We have

I =
1

m

∣∣∣∣∫
Bδ

(f(q)− f(q∗))x(t, q) dq

∣∣∣∣ ≤ ε

3M

∫
Bδ

x(t, q) dq ≤ ε

3M

∫
Q

x(t, q) dq <
ε

3
.

Let U = supq∈Q |f(q)|. Using Lemma 2.4, choose T large enough such that∫
Q\Bδ

x(t, q) dq <
εm

3U
.

Then we have that, ∀ t > T ,

II =
1

m

∣∣∣∣∣
∫
Q\Bδ

f(q)x(t, q) dq

∣∣∣∣∣ ≤ U

m

∫
Q\Bδ

x(t, q) dq <
ε

3
.

Similarly, ∀ t > T ,

III =
1

m

∣∣∣∣f(q∗)

(∫
Bδ

x(t, q) dq −X(t)

)∣∣∣∣ =
|f(q∗)|
m

∫
Q\Bδ

x(t, q) dq

≤ U

m

∫
Q\Bδ

x(t, q) dq <
ε

3
.

Combining these results, we have that given f ∈ C(Q) and ε > 0, there exists finite

T such that
∣∣∣ ∫Q f(q)x(t,q) dq

X(t) − f(q∗)
∣∣∣ < ε, ∀ t > T , and the theorem is proved. �

At this point we sharpen our results. Lemma 2.3 says the total population is

both strictly positive and bounded, while Lemma 2.4 says the part of the population

located anywhere on Q, except for a small ball containing the point q∗ = (b1, a2),

tends to zero as t→∞. Using these facts, we show that the total population X(t)

tends to a limit as t→∞.

Lemma 2.5. Let ε > 0 be given. Then there exists T > 0 such that ∀ t > T,

|X(t)− b1/a2| < ε.

Proof. Let η > 0 be such that 0 < η/a2 < ε. Suppose that for some time τ we

have X(τ) > (b1 + η)/a2. By the continuity of X, there exists T1 > 0 such that

X(t) > (b1 + η)/a2, ∀ t ∈ [τ, T1). Then, for such t,
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q1 − q2X(t) < q1 − q2
(
b1 + η

a2

)
≤ −η .

Using this inequality, together with (2.1), we obtain

d

dt
X(t) =

∫
Q

x(t, q)[q1 − q2X(t)] dq ≤ −η
∫
Q

x(t, q) dq = −ηX(t) .

Consequently X(t) ≤ g(t) = X(τ) exp(−η(t − τ)), for all t ∈ [τ, T1). If X(τ) ≤
b1/a2 + ε, then X(t) is dominated on [τ, T1) by g(t) and so never exceeds b1/a2 + ε,

∀ t ∈ [τ, T1). If X(τ) > b1/a2 + ε, then (b1 + η)/a2 < X(t) < b1/a2 + ε, when

− 1
η

ln( b1+a2ε
a2X(τ)) + τ < t < T1. If T1 = ∞, we are done. If T1 is finite, then X(T1) =

(b1 + η)/a2 by continuity of X(t). A mean value theorem argument as in the proof

of Lemma 2.3 assures that X never again exceeds X(T1). Therefore there exists a

finite time τ ′ such that X(t) < b1/a2 + ε, ∀ t > τ ′.

Let M and m be the upper and lower bounds on the total population established

in Lemma 2.3. By Lemmas 2.3 and 2.4, we may choose a time T2 large enough so

that ∀ t > T2,

1

2

∫
Bδ

x(t, q) dq >
m

4
, (2.4)

and

b2M

∫
Q\Bδ

x(t, q) dq <
ηm

8
. (2.5)

Suppose that for some time τ > T2 we have X(τ) < (b1 − η)/a2. By the continuity

of X, there exists T3 > τ such that X(t) < (b1 − η)/a2, ∀ t ∈ [τ, T3). Choose δ > 0

such that η/(2a2) > b1/a2 − q1/q2, for all q = (q1, q2) ∈ Bδ. Now

d

dt
X(t) ≥ a1

∫
Q\Bδ

x(t, q) dq − b2M
∫
Q\Bδ

x(t, q) dq +

∫
Bδ

x(t, q)[q1 − q2X(t)] dq

(2.6)

holds for any time t ≥ 0. With δ as specified above, and for t ∈ [τ, T3), we

obtain∫
Bδ

x(t, q)[q1 − q2X(t)] dq >

∫
Bδ

x(t, q)

[
q1 − q2

(
b1 − η
a2

)]
dq

=

∫
Bδ

x(t, q)q2

[
q1

q2
−
(
b1 − η
a2

)]
dq

=

∫
Bδ

x(t, q)q2

[
η

a2
−
(
b1

a2
− q1

q2

)]
dq

>

∫
Bδ

x(t, q)q2

[
η

a2
− η

2a2

]
dq

=
η

2

∫
Bδ

x(t, q)
q2

a2
dq ≥ η

2

∫
Bδ

x(t, q) dq . (2.7)
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Using (2.4)–(2.7), we conclude that d
dt
X(t) ≥ ηm

8 > 0, ∀ t ∈ [τ, T3). Conse-

quently, X(t) ≥ X(τ) + ηm
8 (t− τ), ∀ t ∈ [τ, T3). Arguing in a fashion similar to the

first case, we obtain the existence of a finite time τ ′′ such that X(t) > b1/a2− ε for

all t > τ ′′.

In summary: Let ε > 0 be given. Then choose τ ′ and τ ′′ as shown above, and

let T = max{τ ′, τ ′′}. Then ∀ t > T , we have |X(t)− b1/a2| < ε, as claimed.

Since, by Lemma 2.5, the total population tends to a limit, we have the following

corollary of Theorem 2.2.

Corollary 2.6. For every continuous real-valued function f defined on Q,

lim
t→∞

∣∣∣∣∫
Q

f(q)x(t, q) dq − b1

a2
f(q∗)

∣∣∣∣ = 0 .

3. Numerical Results

To illustrate the behavior of the model via numerical simulation, we consider only

a finite number of characteristics. We begin by choosing a partition V of the para-

meter space Q. Let V = V1 × V2, where

V1 : a1 = q0
1 < q1

1 < · · · < qn1
1 = b1 ,

V2 : a2 = q0
2 < q1

2 < · · · < qn2
2 = b2 .

Let N = n1 · n2. Define {Qj}, j = 1, . . . , N , to be the family of subrectangles of Q

resulting from the above defined partition, and assume that |V | → 0 as N → ∞,

where |V | is defined to be the largest edge length of all the subrectangles Qj ,

i.e. |V | = maxk{maxNj=1 |q
j
k − q

j−1
k |}. Also, define qj = (qj1, q

j
2) to be the midpoint

of the rectangle Qj , j = 1, . . . , N .

With these specifications we approximate the continuous model (1.2) by the

following system of ordinary differential equations:
dzj(t)

dt
= zj(t)

(
qj1 − q

j
2

N∑
i=1

µ(Qi)zi(t)

)
,

zj(0) =
1

µ(Qj)

∫
Qj
x0(q) dq .

(3.1)

Note that the variable zj has units that match the units of the continuous model

solution. The existence, uniqueness, and non-negativity of global solutions of the

discrete model (3.1) can be established using standard techniques for systems of

ordinary differential equations.
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Consider the family of simple functions defined by

UN (t, q) =
N∑
j=1

zj(t)χQj (q) .

Using techniques as in Ackleh1 the following convergence result can be established.

Theorem 3.1. Let x0(q) ∈ C(Q) and T > 0. Then supq∈Q |UN(t, q)−x(t, q)| → 0,

as N →∞, uniformly on [0, T ].

For a specific example, choose the parameter space Q to be [1, 2] × [1, 2], and

divide it into 100 evenly sized and spaced subrectangles Qj , j = 1, . . . , 100. Let

Q1 be the subrectangle in the upper left corner of the parameter space Q. The

subrectangle Q2 lies immediately below Q1, Q3 below Q2, etc. Once Q10 is reached

at the lower left corner of Q, move one step to the right and fill in the next column

of subrectangles, with Q11 at the top and Q20 at the bottom. Continuing in this

fashion, cover the parameter space Q with the subrectangles, ending with Q100

in the lower right corner. As in the preceding discussion, choose the points qj ,

j = 1, . . . , 100, to be the midpoints of the subrectangles Qj .

For this discretization, we numerically solve system (3.1) with N = 100

and 0 ≤ t ≤ 80. The initial population density over the parameter space is

zj(0) = 100e−4(qj1−1.5)2

e−4(qj2−1.5)2

, j = 1, . . . , 100. Solving (3.1) with these ini-

tial conditions, we obtain the results indicated in Figs. 2–5.

In Fig. 3, where t = 0.03, we see that the initial conditions are quickly being

flattened out. In Fig. 4, no visible traces of the initial conditions remain, and the

density is beginning to concentrate near q100. By the time t = 80, the density is

concentrated at q100, as shown in Fig. 5.
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Fig. 2. Initial conditions.
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Fig. 3. Short time solution.
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Fig. 4. Middle time solution.

In Sec. 2, we proved that the limiting value of the total population for the

generalized logistic model is the maximum value of the growth to mortality ratio

for the points in the parameter spaceQ. In the numerical simulation, this maximum

occurs at q100. For our discretization, q100
1 = 1.95 and q100

2 = 1.05, so the ratio is

1.95/1.05 = 1.8571. This matches what we get when we multiply the equilibrium

density for z100, which is 185.71, by the measure of Q100, which is 0.01.
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Fig. 5. Long time solution.

4. Conclusions

We have shown that survival of the fittest, as defined in the Introduction, holds for

the generalized logistic model (1.2). Not only does the population density x(t, q)

become concentrated at the point q∗, it converges uniformly to zero on any subset

of the parameter space that excludes a small ball centered at q∗. We believe that

the main underlying assumption in the model (1.2) that leads to such dynamics is

that growth is subpopulation specific. That is, each subpopulation with parameter

q is closed under reproduction. Our current research is focused on modifying this

assumption and allowing for individuals that belong to subpopulations with charac-

teristics q̄ ∈ Q to reproduce individuals with characteristics q. Theoretical and

computational results for a special case of this modification suggest that several

subpopulations survive, not only the fittest (see Ackleh et al.2). In addition, the

assumption that growth is subpopulation specific was used in the development of

generalized Kolmogorov models in Ackleh.1 We plan to investigate the conditions

on the interaction functions and the parameters that lead to survival of the fittest

in the general Kolmogorov population models.
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