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Abstract

We present a quasilinear size-structured model which describes the dynamics of a population with n

competing ecotypes. We assume that the vital rates of each subpopulation depend on the total population
due to competition. We provide conditions on the individual rates which guarantee competitive exclusion
in the case of closed reproduction (offspring always belongs to the same ecotype as the parent). In par-
ticular, our results suggest that the ratio of the reproduction and mortality rates is a good measure to
determine the winning ecotype. Meanwhile, we show that in the case of open reproduction all ecotypes
coexist.
� 2004 Published by Elsevier Inc.
1. Introduction

The competitive exclusion principle asserts that no two populations competing for a common
resource can live indefinitely in the same ecological niche. The validity of this principle has been
investigated for many mathematical models which include both structured and non-structured
populations (e.g., [2–4,12–14,17–24]).
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On the side of non-structured population models the literature contains many results. Below we
briefly discuss a few of them. In [4,20,24] the authors investigate a competitive Lotka–Volterra
system of equations and provide conditions on the parameters which guarantee that all but one
of the species are driven to extinction. In [2] a generalized logistic model was developed. This
model is composed of a continuum of subpopulations each with its own growth and mortality
rates. Using the theory of weak convergence of probability measures the authors show that the
competitive exclusion principle is valid for their model. In [3], a predator–prey Lotka–Volterra
model which consists of many predator–prey subpopulations was studied. Therein, the authors
show that all subpopulations become extinct except for the predator–prey pair which optimizes
the growth to mortality ratio. In [19] the author studies the global stability of a boundary equilib-
rium (that corresponds to the extinction of one competing species) for a general three-dimensional
competition model with two competing predators. The global stability is achieved by the construc-
tion of an appropriate Lyapunov function, which is a modification of those introduced by others.

In [10] the authors consider an n-pathogen, single host model. They show that pathogen strains
with differing levels of virulence die out asymptotically except for those that optimize the basic
reproduction number. In [1] the authors study an n-pathogen, single host model with variable
population size. They prove that if the model parameters satisfy certain inequalities, then compe-
tition between n pathogens for a single host leads to exclusion of all pathogens except the one with
the largest basic reproduction number. In addition, they give an example which shows that if these
inequalities are not satisfied, then coexistence may occur. In [13] the authors study a two-sex, sus-
ceptible–infective–susceptible sexually transmitted disease model with two competing strains.
Therein, they investigate the existence and stability of the boundary equilibria that characterize
the competitive exclusion of these two strains; they also investigate the existence and stability
of the positive coexistence equilibrium, which characterizes the possibility of coexistence of the
two strains. They obtain sufficient and necessary conditions for the existence and global stability
of these equilibria.

For structured populations considerably less work has been done due to the complexity of these
models. In [23] competitive exclusion is proved for a discrete-time, size-structured, non-linear ma-
trix model of m competing species in a chemostat. The winner is the population that is able to
grow at the lowest nutrient concentration. In [17] age and age-size structured population models
composed of n ecotypes were studied. The authors show that a good measure of �ecotype fitness� is
the product of the reproduction and survivorship functions.

Our paper is organized as follows. In Section 2 we present the population model. In Section 3
we establish existence and uniqueness results for the model. In Section 4 under the closed repro-
duction we provide conditions on the individuals rates which guarantee competitive exclusion,
while under the open reproduction we show that all ecotypes survive. Further discussion and some
numerical results are given in Section 5.
2. The population model

We consider a species with n competing ecotypes. For i = 1,2, . . . ,n, we describe the dynamics
of the subpopulation consisting of individuals of the ith ecotype with the following individual size-
structured model of McKendrick–von Foerster type



A.S. Ackleh et al. / Mathematical Biosciences 192 (2004) 177–192 179
ðuiÞt þ giðPðtÞÞðuiÞx þ miðP ðtÞÞui ¼ 0 0 < x < 1; t > 0;

giðP ðtÞÞuið0; tÞ ¼
Xn
j¼1

Z 1

0

ci;jbjðPðtÞÞujðx; tÞdx t > 0;

uiðx; 0Þ ¼ ui0ðxÞ 0 6 x < 1:

ð1Þ
Here ui(x, t), i = 1,2, . . . n, is the density of individuals of the ith ecotype having size x at time t,
and P ðtÞ ¼

Pn
i¼1

R1
0 uiðx; tÞdx is the total number of individuals in the population at time t. The

functions gi, mi, and bi denote the growth rate, the mortality rate, and the reproduction rate of
an individual in the ith subpopulation, respectively. These individual rates depend on the total
number of individuals in the population. The constant parameter 0 6 ci,j 6 1 represents the prob-
ability that an individual of the jth ecotype will reproduce an individual of the ith ecotype.
Clearly,

Pn
j¼1ci;j ¼

Pn
i¼1ci;j ¼ 1; 1 6 i; j 6 n. In this paper we focus on the asymptotic behavior

of the population in two cases. The first case is that all ecotypes are closed under reproduction in
which offspring always belongs to the same ecotype as the parent, i.e., ci,i = 1 and ci,j = 0 for i5 j.
The second case is that ecotypes are open under reproduction in which individuals of ecotype i
may reproduce individuals of ecotype j.

Linear models of type (1) have been used to describe the dynamics of mosquitofish populations
in rice fields [6]. Simulation studies therein demonstrate that solutions to such models could lead
to population densities that exhibit dispersion and bimodality as field data suggested in [9]. Such
dispersion and bimodality cannot result from the classical size-structured model (i.e., all individ-
uals are assumed to be of the same ecotype) except under some biologically unrealistic conditions
(see [7]). This indicates that the consideration of several ecotypes is important if such size-struc-
tured models are to be used as prediction tools.

Rigorous theoretical developments of inverse problems associated with linear models of type (1)
were given in [7,15,16]. In [8] such inverse methodology was used for estimating the distribution of
individual growth rates based on aggregate population data. Therein, a good fit of the model to
field data was presented. A survey of results and other references for such models can be found
in [5].
3. Existence and uniqueness results

Throughout the discussion we assume that the parameters in (1) satisfy the following:

(H1) gi(P) is strictly positive and continuously differentiable for 0 < P <1.

(H2) mi(P) is non-negative and continuously differentiable for 0 6 P <1.

(H3) bi(P) is continuously differentiable and uniformly bounded for 0 6 P <1 with 0 6 bi 6
bM.

(H4) ui0 2 L1(0,1) and ui0 P 0.

In the spirit of [11], we use the contraction mapping argument to discuss the existence-unique-
ness of solutions to problem (1). We begin with the definition of the solution.
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Definition 1. A non-negative function u(x, t) = (u1(x, t),u2(x, t), . . . ,un(x, t)) on [0,1) · [0,T),
with u(Æ , t) integrable is a solution of (1) if PðtÞ :¼

Pn
i¼1

R1
0 uiðx; tÞdx is a continuous function on

[0,T) and for i = 1,2, . . . ,n,ui(x, t) satisfies (1)2, (1)3, and the equation
Duiðx; tÞ ¼ �miðP ðtÞÞuiðx; tÞ 0 < x < 1; 0 < t < T ð2Þ

with
Duiðx; tÞ ¼ lim
h!0

uiðX iðt þ h; x; tÞ; t þ hÞ � uiðx; tÞ
h

; ð3Þ
where Xi(t; x0, t0) is the solution of the equation for the characteristic curves given by
d
dt xðtÞ ¼ giðPðtÞÞ;
xðt0Þ ¼ x0:

�
ð4Þ
From (H1) it follows that the function Xi is strictly increasing. Hence, a unique inverse function
si(x;x0, t0) exists. Let zi(t) = Xi(t;0,0) where (zi(t), t) represents the characteristic curve passing
through (0,0) and dividing the (x, t)-plane into two parts.

Let BiðtÞ :¼
Pn

j¼1

R1
0 ci;jbjðPðtÞÞujðx; tÞdx; the inflow of newborns in the ith subpopulation at

time t. Using the method of characteristics, we reduce problem (1) to a system of coupled equa-
tions for P(t) and Bi(t).

Integrating (2) along the characteristics, we have
uiðx; tÞ ¼
Biðsið0; x; tÞÞ

giðPðsið0; x; tÞÞÞ
exp �

Z t

sið0;x;tÞ
miðP ðsÞÞds

 !
x < ziðtÞ;

uiðx; tÞ ¼ ui0ðX ið0; x; tÞÞ exp �
Z t

0

miðP ðsÞÞds
� �

x P ziðtÞ:
ð5Þ
Then integrating (5) with respect to x and summing over the indices i = 1,2, . . . ,n, we obtain an
integral equation for P(t)
P ðtÞ ¼
Xn
i¼1

Z ziðtÞ

0

Biðsið0; x; tÞÞ
giðPðsið0; x; tÞÞÞ

exp �
Z t

sið0;x;tÞ
miðP ðsÞÞds

 !
dx

"

þ
Z 1

ziðtÞ
ui0ðX ið0; x; tÞÞ exp �

Z t

0

miðP ðsÞÞds
� �

dx

#

¼
Xn
i¼1

Z t

0

BiðgÞe
�
R t

g
miðP ðsÞÞds

dgþ
Z 1

0

ui0ðnÞe�
R t

0
miðPðsÞÞdsdn

� �
: ð6Þ
Similarly, substituting (5) in the definition of Bi(t), we obtain an integral equation for Bi(t),
i = 1,2, . . . ,n,
BiðtÞ ¼
Xn
j¼1

Z t

0

ci;jbjðP ðtÞÞBjðgÞe
�
R t

g
mjðPðsÞÞds

dgþ
Z 1

0

ci;jbjðPðtÞÞlj0ðnÞe
�
R t

0
mjðPðsÞÞdsdn

� �
: ð7Þ
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Clearly, if P(t) and Bi(t) are non-negative continuous solutions of (6) and (7), then u(x, t) defined
by (5) is a solution of (1). Since we have established a correspondence between (1) and (6)–(7), to
obtain the existence and uniqueness results for problem (1), we only need to study the solvability
of the system of integral equations (6) and (7). To this end, for K > ku0kL1 ¼

Pn
i¼1

R1
0 ui0ðxÞdx, let

ST ;K ¼ ff ðtÞ 2 C½0; T � j f ð0Þ ¼ ku0kL1 ; 0 6 f ðtÞ 6 Kg. For each P 2 ST,K, let Bi(t) 2 C[0,T] be the
unique non-negative solution of the linear Volterra integral equation (7), and we define the oper-
ator P : ST ;K ! C½0; T � in such a way that PðPÞðtÞ is the right-hand side of (6) for these P(t) and
Bi(t).

Lemma 2. Suppose that hypotheses (H1)–(H4) hold. Then there exists a value T > 0 for which P
has a unique fixed point.

Proof. We first show that P maps ST,K into itself. To this end, we obtain a function to bound
Bi(t). By (7) and the hypotheses (H2), (H3), we have
BiðtÞ 6 bM

Xn
j¼1

Z t

0

BjðgÞdgþ bMku0kL1 :
Thus,
Xn
j¼1

BjðtÞ 6 nbM

Z t

0

Xn
j¼1

BjðgÞdgþ nbMku0kL1 ;
which, by Gronwall�s inequality implies
Xn
j¼1

BjðtÞ 6 nbMku0kL1enbMT : ð8Þ
A combination of (6) and (8) then yields
PðP ÞðtÞ 6
Z t

0

Xn
j¼1

BjðgÞdgþ ku0kL1 6 nbMku0kL1
Z t

0

enbMgdgþ ku0kL1 6 enbMT ku0kL1 6 K
provided T is very small.
We next show that P is contractive. For any P, P̂ 2 ST ;K , letting Bi and bBi be the solutions of

(7) for P and P̂ , respectively, we have
jPðPÞðtÞ �PðP̂ÞðtÞ j ¼
Xn
j¼1

Z t

0

BjðgÞe
�
R t

g
mjðPðsÞÞds

dg�
Xn
j¼1

Z t

0

bBjðgÞe
�
R t

g
mjðP̂ðsÞÞds

dg

�����
þ
Xn
j¼1

Z 1

0

uj0ðnÞ e
�
R t

0
mjðP ðsÞÞds � e

�
R t

0
mjðP̂ðsÞÞds

� �
dn

�����
6

Xn
j¼1

Z t

0

BjðgÞ � bBjðgÞ
��� ���dgþXn

j¼1

Z t

0

bBjðgÞ
Z t

g
mjðP ðsÞÞ
��

�mjðP̂ðsÞÞ
��dsdgþXn

j¼1

Z 1

0

uj0ðnÞ
Z t

0

mjðP ðsÞÞ � mjðP̂ ðsÞÞ
�� ��dsdn:

ð9Þ
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We now estimate each integral in the last expression of (9). Let jF iðtÞj ¼ jBiðtÞ � bBiðtÞj. Then
from (7) and (8), we have
jF iðtÞ j 6
Xn
j¼1

Z t

0

ci;jbjðP ðtÞÞBjðgÞe
�
R t

g
mjðP ðsÞÞds

dg�
Z t

0

ci;jbjðPðtÞÞbBjðgÞe
�
R t

g
mjðPðsÞÞds

dg

����
þ
Z t

0

ci;jbjðP ðtÞÞbBjðgÞe
�
R t

g
mjðPðsÞÞds

dg�
Z t

0

ci;jbjðP ðtÞÞbBjðgÞe
�
R t

g
mjðP̂ ðsÞÞds

dg

þ
Z t

0

ci;jbjðP ðtÞÞbBjðgÞe
�
R t

g
mjðP̂ðsÞÞds

dg�
Z t

0

ci;jbjðP̂ ðtÞÞbBjðgÞe
�
R t

g
mjðP̂ ðsÞÞds

dg

����
þ
Xn
j¼1

Z 1

0

ci;j bjðP ðtÞÞe
�
R t

0
mjðP ðsÞÞds � bjðP̂ ðtÞÞe

�
R t

0
mjðP̂ ðsÞÞds

���� ����uj0ðnÞdn� �

6

Xn
j¼1

bM

Z t

0

BjðgÞ � bBjðgÞ
��� ���dgþXn

j¼1

bM

Z t

0

bBjðgÞ
Z t

g
mjðP ðsÞÞ � mjðP̂ ðsÞÞ
�� ��dsdg

þ
Xn
j¼1

Z t

0

bBjðgÞ jbjðP ðtÞÞ � bjðP̂ðtÞÞ j dg

þ
Xn
j¼1

Z 1

0

bjðP ðtÞÞe
�
R t

0
mjðPðsÞÞds � bjðP̂ ðtÞÞe

�
R t

0
mjðP̂ðsÞÞds

���� ����uj0ðnÞdn

or equivalently,
jF iðtÞ j6
Xn
j¼1

bM

Z t

0

j F jðgÞ j dgþ GiðtÞ: ð10Þ
Here
GiðtÞ ¼
Xn
j¼1

bM

Z t

0

bBjðgÞ
Z t

g
mjðP ðsÞÞ � mjðP̂ ðsÞÞ
�� ��dsdg

þ
Xn
j¼1

Z t

0

bBjðgÞ j bjðPðtÞÞ � bjðP̂ ðtÞÞ j dg

þ
Xn
j¼1

Z 1

0

bjðPðtÞÞe
�
R t

0
mjðPðsÞÞds � bjðP̂ðtÞÞe

�
R t

0
mjðP̂ðsÞÞds

���� ����uj0ðnÞdn
6

Xn
j¼1

bM

Z t

0

bBjðgÞ
Z t

g
mjðP ðsÞÞ � mjðP̂ ðsÞÞ
�� ��dsdgþ bK j PðtÞ � P̂ ðtÞ j

Xn
j¼1

Z t

0

bBjðgÞdg

þ
Xn
j¼1

Z 1

0

bM

Z t

0

mjðP ðsÞÞ � mjðP̂ ðsÞÞ
�� ��dsþ j bjðP ðtÞÞ � bjðP̂ðtÞÞ j

� �
uj0ðnÞdn

6 ðbMmKT þ bKÞkP � P̂k1
Xn
j¼1

Z t

0

bBjðgÞdgþ ðbMmKT þ bKÞkP � P̂k1ku0kL1

6 ðbMmKT þ bKÞenbMTku0kL1kP � P̂k1 :¼ JðT ÞkP � P̂k1;
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where bK ¼ sup
P2½0;bK �;16i6n

j b0
iðPÞ j and mbK ¼ sup

P2½0;bK �;16i6n
j m0

iðP Þ j. Thus, from (10) we obtain
j F iðtÞ j6
Xn
j¼1

bM

Z t

0

j F jðgÞ j dgþ JðT ÞkP � P̂k1:
Summing the above inequality over the indices i = 1,2, . . . ,n, we find
Xn
i¼1

j F iðtÞ j6 nbM

Z t

0

Xn
j¼1

j F jðgÞ j dgþ nJðT ÞkP � P̂k1;
which, by Gronwall�s inequality leads to
Xn
i¼1

j F iðtÞ j6 nJðT ÞenbMTkP � P̂k1:
Hence, we have
Xn
j¼1

Z t

0

BjðgÞ � bBjðgÞ
��� ���dg 6 nJðT ÞenbMT TkP � P̂k1:
On the other hand, we find that
Xn
j¼1

Z t

0

bBjðgÞ
Z t

g
mjðP ðsÞÞ � mjðP̂ ðsÞÞ
�� ��dsdg 6 mKTkP � P̂k1

Z t

0

Xn
j¼1

bBjðgÞdg

6 mKTku0kL1enbMTkP � P̂k1
and
 Xn
j¼1

Z 1

0

uj0ðnÞ
Z t

0

mjðP ðsÞÞ � mjðP̂ðsÞÞ
�� ��dsdn 6 mKTku0kL1kP � P̂k1:
Therefore, P is contractive provided that T is sufficiently small. The proof is thus completed. h

From the unique existence of the solution P(t) and Bi(t) of system (6)–(7) it follows that the solu-
tion of problem (1) must be unique because each ui(x, t) given by (5) is uniquely determined by P(t)
and Bi(t). Thus we have the following local existence result.

Theorem 3. Suppose that hypotheses (H1)–(H4) hold. Then there exists a value T > 0 such that
problem (1) has a unique solution up to time T.

In order to establish the global existence result for problem (1), we introduce an upper bound
on P(t) for t 2 [0,T].

Lemma 4. Let u(x, t) be a solution of (1) up to time T. Then P(t) satisfies the following bound:
PðtÞ 6 ku0kL1ebMT for t 2 ½0; T �: ð11Þ
Proof. Let P iðtÞ ¼
R1
0

uiðx; tÞdx and PðtÞ ¼
Pn

i¼1P iðtÞ. Integrating (5) with respect to x, we obtain
an integral equation for Pi(t), i = 1,2, . . . ,n,
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P iðtÞ ¼
Z t

0

BiðgÞe
�
R t

g
miðP ðsÞÞds

dgþ
Z 1

0

ui0ðnÞe�
R t

0
miðPðsÞÞdsdn: ð12Þ
Then differentiating (12) with respect to t, we have
P 0
iðtÞ ¼

Xn
j¼1

ci;jbjðP ÞP j � miðPÞP i: ð13Þ
Thus,
P 0ðtÞ ¼
Xn
i¼1

Xn
j¼1

cj;ibiðPÞ � miðPÞ
 !

P i ¼
Xn
i¼1

ðbiðP Þ � miðP ÞÞP i 6

Xn
i¼1

biðP ÞP i 6 bMPðtÞ:
Integrating the above relation over (0, t) yields (11). h

Theorem 5. Suppose that hypotheses (H1)–(H4) hold, then problem (1) has a unique solution for all
positive time.

The proof is essentially the same as that of Theorem 3 in [11], and hence is omitted.
4. Asymptotic behavior

Throughout this section, we assume an additional condition on the reproduction and the mor-
tality rates.

(H5) bi (P) is non-increasing and mi(P) is increasing for 0 6 P <1, and there exists P �
i such that

biðP �
i Þ ¼ miðP �

i Þ; i ¼ 1; 2; . . . ; n.

In order to study the asymptotic behavior of the population, we consider the following system
of coupled ordinary differential equations:
P 0
iðtÞ ¼

Xn
j¼1

ci;jbjðP ÞP j � miðPÞP i; P ið0Þ > 0; i ¼ 1; 2; . . . ; n: ð14Þ
We first show that the population P(t) is uniformly bounded.

Lemma 6. Let P ¼ max16i6nP �
i and P ¼ min16i6nP �

i . For any 0 < e < 1, define
I e ¼ ½P ð1� eÞ; P ð1þ eÞ�. Then there exists a finite time t�e such that P 2 Ie for t P t�e .

Proof. Summing (14) over the indices i = 1,2, . . . ,n, we have
P 0ðtÞ ¼
Xn
i¼1

Xn
j¼1

cj;ibiðPÞ � miðPÞ
 !

P i ¼
Xn
i¼1

ðbiðP Þ � miðP ÞÞP i: ð15Þ
If P > P ð1þ eÞ, then biðP Þ � miðP Þ 6 �~he with ~he > 0 for i = 1,2, . . . ,n. By (15), P 0
6 �~heP ,

i.e., P is strictly decreasing in t. Hence, there exists a value ~te such that P 6 P ð1þ eÞ for t P ~te.
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On the other hand, if P < P(1�e), then biðPÞ � miðP Þ P ĥe with ĥe > 0 for i = 1,2, . . . ,n. By
(15), P 0 P ĥeP , i.e., P is strictly increasing in t. Hence, there exists a value t̂e such that
P P P(1 � e) for t P t̂e.

Let t�e ¼ maxf~te; t̂eg. Then P ð1� eÞ 6 PðtÞ 6 Pð1þ eÞ for all t P t�e . h
4.1. Closed reproduction case

In this case, we assume that reproduction is closed under subpopulations, that is, individuals in
the ith subpopulation only reproduce individuals in the ith subpopulation. Hence
ci,i = 1,ci,j = 0, i5 j, i, j = 1,2, . . . ,n, and (14) takes the form
P 0
i ¼ ðbiðP Þ � miðP ÞÞP i; P ið0Þ > 0; i ¼ 1; 2; . . . ; n: ð16Þ
We now introduce a condition on the ratio of the reproduction and mortality rates.

(H6) b1ðPÞ
m1ðPÞ >

biðPÞ
miðPÞ ; i ¼ 2; . . . ; n, for any P 2 I0 ¼ ½P ; P �.

The next result shows that under (H6) the subpopulations P2, . . . ,Pn become extinct as t !1.

Lemma 7. Suppose that hypothesis (H6) holds. Then the solution of (16) satisfies that for each
i = 2, . . . , n,Pi(t) ! 0 as t !1.

Proof. We first note that by the continuity of bi and mi, there exists an �eð0 < �e < 1Þ such that (H6)
holds for P 2 I�e. In particular, (H6) holds for P ¼ P �

1, which implies P ¼ P �
1 > P �

i ; i ¼ 2; . . . ; n. To
show that for i = 2, . . . ,n,Pi(t) ! 0 as t !1, it suffices to show that for i = 2, . . . , n,

P
ri
i
P1

! 0 as
t !1 for some positive constant ri. To this end, choose 0 < e < �e sufficiently small so that for
any P 2 I e � I�e we have
ðrimiðP Þ � m1ðP ÞÞ
b1ðP Þ
m1ðP Þ

� 1

� �
6

1

2
rimiðP Þ

b1ðPÞ
m1ðPÞ

� biðP Þ
miðPÞ

� �
;

where ri ¼ minP2I�e
m1ðP Þ
miðPÞ. Set UiðtÞ ¼

P
ri
i ðtÞ
P 1ðtÞ . Ui satisfies that for t P t��
U0
i ¼

riP ri�1
i P 0

iP 1 � P ri
i P

0
1

P 2
1

¼ riP ri
i ðbiðPÞ � miðPÞÞP 1 � P ri

i ðb1ðP Þ � m1ðPÞÞP 1

P 2
1

¼ ½riðbiðP Þ � miðP ÞÞ � ðb1ðP Þ � m1ðPÞÞ�Ui

¼ rimiðP Þ
biðP Þ
miðP Þ

� 1

� �
� m1ðPÞ

b1ðP Þ
m1ðP Þ

� 1

� �� �
Ui

¼ ðrimiðPÞ � m1ðP ÞÞ
b1ðPÞ
m1ðPÞ

� 1

� �
� rimiðPÞ

b1ðPÞ
m1ðP Þ

� biðPÞ
miðP Þ

� �� �
Ui

6 � 1

2
rimiðP Þ

b1ðPÞ
m1ðP Þ

� biðPÞ
miðPÞ

� �
Ui 6 �kiUi ð17Þ
with positive ki. Integrating (17) from t�e to t then yields
UiðtÞ 6 Uiðt�e Þe�kiðt�t�e Þ; ð18Þ
where Uiðt�e Þ ¼
P
ri
i ðt�e Þ
P 1ðt�e Þ

> 0. Hence, Ui(t) ! 0 as t !1. h
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We now show that P1 converges to a positive equilibrium, and hence is the winning ecotype. To
this end, we fix e as chosen in the proof of the above theorem.

Theorem 8. Suppose that hypothesis (H6) holds. Then P 1ðtÞ ! P �
1 as t !1.

Proof. Consider the following initial value problem:
y0 ¼ ðb1ðyÞ � m1ðyÞÞy; t�e < t < 1;

yðt�e Þ ¼ P 1ðt�e Þ:

�

Clearly, yðtÞ ! P �

1 as t !1. Furthermore, since P 0
1 6 ðb1ðP 1Þ � m1ðP 1ÞÞP 1, by comparison

y(t) P P1(t) for all t P t�e . On the other hand, we have
d

dt
ln

P 1

y

� �
¼ P 0

1

P 1

� y0

y
¼ ðb1ðPÞ � m1ðP ÞÞ � ðb1ðyÞ � m1ðyÞÞ

¼ ðb1ðP 1Þ � m1ðP 1ÞÞ � ðb1ðyÞ � m1ðyÞÞ þ ðb0
1ðfÞ � m0

1ðfÞÞ
Xn
j¼2

Pj

¼ b0
1ðf̂Þ � m0

1ðf̂Þ
� �

P 1 � yð Þ þ ðb0
1ðfÞ � m0

1ðfÞÞ
Xn
j¼2

Pj; ð19Þ
where f is between P and P1 and f̂ is between P1 and y.
Since m0

1ðfÞ � b01ðfÞ
	 


P c > 0 for t P t�e , rewriting (19) we find
y � P 1 6
1

c
d

dt
ln

P 1

y

� �
þ ðm0

1ðf̂Þ � b0
1ðf̂ÞÞ

Xn
j¼2

Pj

 !
: ð20Þ
Integrating (20) from t�e to t, we then obtain
Z t

t�e

ðyðgÞ � P 1ðgÞÞdg 6
1

c
ln

P 1ðtÞ
yðtÞ

� �
þ
Xn
j¼2

Z t

t�e

ðm0
1ðfÞ � b0

1ðfÞÞP jðgÞdg
 !

6 M < 1;
where M is independent of t, since P1(t) and y1(t) are both bounded by positive constants, and by
(18) for j = 2, . . . ,n,

R t
t�e
PjðtÞdt < 1. This implies that

R t
t�e
ðyðtÞ � P 1ðtÞÞdt < 1. Furthermore, it is

easily seen that (y(t)�P1(t))
0 is bounded on ½t�e ;1Þ. Hence, y(t)�P1(t) ! 0 as t ! 1, that is,

P 1ðtÞ ! P �
1 as t !1. h
4.2. Open reproduction case

In this case, we assume that reproduction is open under subpopulations, that is, individuals in
the ith subpopulation may also reproduce individuals in the jth subpopulation. We will show that
if the graph associated with the matrix [ci,j] is strongly connected (the matrix [ci,j] is irreducible),
then all ecotypes of the population coexist. To this end, for the convenience of the reader, we as-
sume the following:

(H7) c1,2 > 0, c2,3 > 0, . . . cn�1,n > 0, and cn,1 > 0. Otherwise, ci, j P 0, 1 6 i, j 6n.
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The assumption (H7) implies that the matrix [ci, j] is irreducible, and our following argument can
be easily modified to apply in the case where (H7) is replaced by any other assumption that leads
to strongly connected graph associated with the matrix [ci, j].

We now show that under (H7) all ecotypes coexist for all times.

Theorem 9. Suppose that hypothesis (H7) holds. Then there exists a positive constant c such that
lim inft!1Pi

(t) P c for i = 1,2, . . . , n.

Proof. To obtain the claimed lower bound, it suffices to show that there exists a T �
1 > 0 such that

Pi P c for t P T �
1, i = 1, 2, . . . ,n. For simplicity, let I ¼ I1=2 ¼ ½P=2; 3P=2� and T �

0 ¼ t�1=2. We first
define W1(t) = P1(t). Taking (14) into account, we find that for t P T �

0,W1 satisfies
W0
1 ¼

Xn
j¼1

c1;jbjðPÞPj � m1ðPÞP 1 P c1;2b2ðP ÞP 2 � m1ðP ÞP 1 P c1ðP 2 þW1Þ � d1W1; ð21Þ
where c1 = min{c1,2minP 2 I b2(P), minP 2 I m1(P)} and d1 = 2 maxP 2 I m1(P). Then let
W2(t) = P2 + W1. W2 satisfies
W0
2 ¼

Xn
j¼1

c2;jbjðPÞPj þW0
1 � m2ðPÞP 2 P c2;3b3ðPÞP 3 þ c1W2 � d1W1 � m2ðP ÞP 2

P c2ðP 3 þW2Þ � d2W2: ð22Þ
Now let W3(t) = P3 + W2. In a similar manner, we can see that W3 satisfies
W0
3 P c3ðP 4 þW3Þ � d3W3: ð23Þ
Thus, we can define a sequence fWiðtÞgni¼1 such that for t P T �
0; i ¼ 1; 2; . . . ; n� 1,
W0
i P ciWiþ1 � diWi ð24Þ
and
Wn ¼ Pn þWn�1 ¼ P P P ; ð25Þ

where ci = min{ci�1,ci, i + 1minP2I bi+1(P)} and di = max{di�1maxP2I mi

(P)}, i = 2, . . . ,n � 1.
In view of (24) and (25), we have
Wn�1 P ~cn�1 � dn�1Wn�1:
Integrating the above inequality from T �
0 to t, we find
W0
n�1 P

~cn�1

dn�1

1� e�dn�1ðt�T �
0
Þ	 

;

which implies that for t P 2T �
0, Wn�1 P ĉn�1. Then by means of (24), we find that for t P 3T �

0,
Wn�2 P ĉn�2. Continuing in such a way, finally we obtain that for t P nT �

0, W1 P ĉ1, that is
P 1 P ĉ1. We then make use of (14) to find that for t P nT �

0,
P 0
n P cn;1b1ðPÞP 1 � mnðP ÞPn P dn � dnPn; ð26Þ
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which, upon integration over ðnT �
0; tÞ yields that for t P ðnþ 1ÞT �

0, Pn P d̂n. Repeating this pro-
cess in a backward manner, one can see that there exists a positive constant c such that Pi P c for
t P T �

1 ¼ 2nT �
0; i ¼ 1; 2; . . . ; n. Thus, the proof is completed. h
5. Further discussion and numerical results

In the closed reproduction case, from Section 4.1 it is clear that subpopulations with smaller
ratios bi(P)/mi(P) will go to extinction. This leads to the following question: What happens if
two subpopulations have the same largest ratio? We will show that in this case both subpopula-
tions should survive. To this end, since all other subpopulations having smaller ratio will go to
extinction, we will focus on the following subsystem consisting of two subpopulations with the
largest ratio b1(P)/m1(P) = b2(P)/m2(P)
P 0
i ¼ ðbiðPÞ � miðPÞÞP i; P ið0Þ > 0; i ¼ 1; 2: ð27Þ
Because the ratios are equal, P �
1 ¼ P �

2ð¼ P �Þ. If P1(0) + P2(0) = P(0) < P*, then P 0
i > 0, which

means that both P1 and P2 will increase in t, and hence for tP 0,Pi(0) 6 Pi(t) 6 P*, i = 1,2. If
P1(0) + P2(0) = P(0) = P*, then P1 = P1(0) and P2 = P2(0) for t P 0. Finally, if P1(0) +
P2(0) = P(0) > P*, it is easily seen that P* 6 P(t) 6 P(0) for tP 0. To show that in this case li-
m inft!1Pi(t) > 0 for i = 1,2 as well, we argue as follows: From the proof of Lemma 7 we see that
for any arbitrary positive constant r2 and for P* 6 P(t) 6 P(0)
U0
2ðtÞ 6 ðr2m2ðP Þ � m1ðPÞÞ

b1ðP Þ
m1ðPÞ

� 1

� �
:

Choose r2 large enough such that r2m2(P) � m1(P) P 0 for P 2 [P*,P(0)]. Then U 0
2(t) 6 0,

which yields P ri
2 ðtÞ=P 1ðtÞ 6 U2ð0Þ. Hence if lim inft!1P1(t) = 0, then liminft ! 1P2(t) = 0. Using

similar argument, it follows that if lim inft ! 1P2(t) = 0, then lim inft!1 P1(t) = 0. Since
P* 6 P(t) 6 P(0), we obtain lim inft!1Pi(t) > 0, i = 1,2, and therefore both subpopulations
should survive.

Although we have shown that in the case of two equal largest ratios, both subpopulations sur-
vive, the exact asymptotic behavior of this two-ecotype system remains complicated and may de-
pend on the initial conditions Pi(0), i = 1,2. For example, suppose that b1(P) = b2(P) = 1 and
m1(P) = m2(P) = P, then system (27) reduces to the following system:
P 0
i ¼ ð1� P ÞP i; P ið0Þ > 0; i ¼ 1; 2:
Note that the equilibrium of this system satisfies P̂ 1 þ P̂ 2 ¼ P̂ ¼ 1. Hence, there is an infinite
number of equilibrium points with 0 6 P̂ 1 6 1 being arbitrary and P̂ 2 ¼ 1� P̂ 1. Adding the two
equations, one can easily find that P satisfies a logistic dynamics and P! 1 as t !1. Further-
more, dividing the two equations, one has dP1/dP2 = P1/P2, and therefore P1/P2 = P1(0)/P2(0).
From this one can see that P1 ! P1(0)/P(0) and P2 ! P2(0)/P(0) as t !1.

In the open reproduction case, if the kth (1 6 k 6 n) node in the graph associated with the
matrix [ci, j] is not connected to any other node, that is, ck, k = 1 and ck, j = 1
for j = 1, . . . ,k�1,k + 1, . . . ,n, then the kth subpopulation may become extinct. To show this,
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noticing
Pn

i¼1ci;k ¼ 1, it follows that ci,k=0 for i = 1, . . . ,k�1,k + 1, . . . ,n. Let
~P ¼

Pk�1
i¼1 P i þ

Pn
i¼kþ1P i. Summing (14) over the indices i = 1, . . . ,k � 1,k + 1, . . . ,n, we find
~P
0 ¼
Xn
i¼1
i 6¼k

Xn
j¼1
i6¼k

cj;ibiðP Þ � miðP Þ

0BB@
1CCAP i ¼

Xn
i¼1
i6¼k

ðbiðPÞ � miðPÞÞP i P ðbðPÞ � �mðP ÞÞ~P ; ð28Þ
where b = min{b1 . . . ,bk�1,bk+1, . . . ,bn} and �m ¼ maxfm1; . . . ;mk�1;mkþ1; � � � ;mng.
As before, we impose an assumption on the ratio of the reproduction and mortality rates.

(H8) For any P 2 I0 ¼ ½P ; P �; bðP Þ
�mðPÞ >

bkðPÞ
mkðP Þ and bðPÞ P �mðP Þ.

As in the proof of Lemma 7, we choose eð0 < e < �eÞ small enough so that for any P 2 I e � I�e
rmkðP Þ � �mðP Þð Þ
bðP Þ
�mðP Þ � 1

� �
6

1

2
rmkðP Þ

bðP Þ
�mðP Þ �

bkðP Þ
mkðP Þ

� �
;

where r ¼ minP2I�e
�mðPÞ
mkðPÞ. We then introduce an auxiliary function UðtÞ ¼ Pr

k ðtÞ
~P ðtÞ . U satisfies that for

t P t�e ,
U0 ¼ rP r�1
k P 0

k
~P � P r

k
~P
0

~P
2

6

rP r
kðbkðP Þ � mkðP ÞÞ~P � P r

kðbðP Þ � �mðP ÞÞ~P
~P
2

¼ ½rðbkðP Þ � mkðP ÞÞ � ðbðPÞ � �mðP ÞÞ�U

¼ rmkðP Þ
bkðP Þ
mkðP Þ

� 1

� �
� �mðP Þ

bðPÞ
�mðPÞ � 1

� �� �
U

¼ ðrmkðP Þ � �mðP ÞÞ
bðP Þ
�mðPÞ � 1

� �
� rmkðP Þ

bðP Þ
�mðP Þ �

bkðP Þ
mkðP Þ

� �� �
U

6 � 1

2
rmkðP Þ

bðP Þ
�mðP Þ �

bkðP Þ
mkðP Þ

� �
U 6 �kU ð29Þ
with k > 0. Integrating (29) from t�e to t then yields
UðtÞ 6 Uðt�e Þe�kðt�t�e Þ;
which implies U(t) ! 0, and hence Pk(t) ! 0 as t !1. Clearly, if the remaining n�1 ecotypes sat-
isfy (H7) (with n replaced by n�1), then using previous arguments one can see that they coexist.
Thus we have the following result.

Theorem 10. If the kth subpopulation satisfies ck, k = 1,ck, j = 0 for j = 1, . . . ,k�1,k + 1, . . . , n and
hypothesis (H8) holds, then it will eventually become extinct. Moreover, if the other n � 1 ecotypes
satisfy (H7), they will coexist.

The next numerical example illustrates that assumption (H8) is sufficient but not necessary for
the extinction of the kth subpopulation. In this example we let n = 3,b1 = 2.7,b2 = 2.4 and
b3 = 2.1. We choose the mortality functions as m1 = 0.054P, m2 = 0.096P and m3 = 0.07P, while
the probabilities ci, j are selected as c1,1 = 0.4,c1,2 = 0.6, c1,3 = 0,c2,1 = 0.6,c2,2 = 0.4,c2,3 = 0,
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c3,1 = 0,c3,2 = 0 and c3,3 = 1. In Fig. 1 we present the solution to this system of differential equa-
tions with the initial conditions P1(0) = P2(0) = 0.5 and P3(0) = 1. The figure shows that P3 be-
comes extinct although it can be easily verified that hypothesis (H8) does not hold for this
example.
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Fig. 2. Survival of P3 and extinction of P1 and P2.
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Fig. 1. Extinction of P3.
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Our last numerical example indicates that if (H8) is not satisfied, then the kth subpopulation
may possibly survive while the subpopulations P1, . . . ,Pk�1,Pk+1, . . . ,Pn can become extinct.
In this example we still let n = 3,b1 = 2.7,b2 = 2.4 and b3 = 2.1. We choose the mortality func-
tions as m1 = 0.054P,m2 = 0.1091P and m3 = 0.0583P, while the probabilities ci, j are selected as
c1,1 = 0.1,c1,2 = 0.9,c1,3 = 0, c2,1 = 0.9,c2,2 = 0.1,c2,3 = 0,c3,1 = 0,c3,2 = 0 and c3,3 = 1. In Fig. 2
we present the numerical results for the initial conditions P1(0) = P2(0) = 0.5 and P3(0) = 1.
The figure shows that P3 survives while P1 and P2 die out. It is worth pointing out that even
though P1 dies out,

b1
m1

> b3
m3

for this choice of functions.
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