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Abstract

We present a quasilinear size-structured model which describes the dynamics of a population with n
competing ecotypes. We assume that the vital rates of each subpopulation depend on the total population
due to competition. We provide conditions on the individual rates which guarantee competitive exclusion
in the case of closed reproduction (offspring always belongs to the same ecotype as the parent). In par-
ticular, our results suggest that the ratio of the reproduction and mortality rates is a good measure to
determine the winning ecotype. Meanwhile, we show that in the case of open reproduction all ecotypes
coexist.
© 2004 Published by Elsevier Inc.

1. Introduction

The competitive exclusion principle asserts that no two populations competing for a common
resource can live indefinitely in the same ecological niche. The validity of this principle has been
investigated for many mathematical models which include both structured and non-structured
populations (e.g., [2-4,12-14,17-24]).
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On the side of non-structured population models the literature contains many results. Below we
briefly discuss a few of them. In [4,20,24] the authors investigate a competitive Lotka—Volterra
system of equations and provide conditions on the parameters which guarantee that all but one
of the species are driven to extinction. In [2] a generalized logistic model was developed. This
model is composed of a continuum of subpopulations each with its own growth and mortality
rates. Using the theory of weak convergence of probability measures the authors show that the
competitive exclusion principle is valid for their model. In [3], a predator—prey Lotka—Volterra
model which consists of many predator—prey subpopulations was studied. Therein, the authors
show that all subpopulations become extinct except for the predator—prey pair which optimizes
the growth to mortality ratio. In [19] the author studies the global stability of a boundary equilib-
rium (that corresponds to the extinction of one competing species) for a general three-dimensional
competition model with two competing predators. The global stability is achieved by the construc-
tion of an appropriate Lyapunov function, which is a modification of those introduced by others.

In [10] the authors consider an n-pathogen, single host model. They show that pathogen strains
with differing levels of virulence die out asymptotically except for those that optimize the basic
reproduction number. In [1] the authors study an n-pathogen, single host model with variable
population size. They prove that if the model parameters satisfy certain inequalities, then compe-
tition between n pathogens for a single host leads to exclusion of all pathogens except the one with
the largest basic reproduction number. In addition, they give an example which shows that if these
inequalities are not satisfied, then coexistence may occur. In [13] the authors study a two-sex, sus-
ceptible—infective—susceptible sexually transmitted disease model with two competing strains.
Therein, they investigate the existence and stability of the boundary equilibria that characterize
the competitive exclusion of these two strains; they also investigate the existence and stability
of the positive coexistence equilibrium, which characterizes the possibility of coexistence of the
two strains. They obtain sufficient and necessary conditions for the existence and global stability
of these equilibria.

For structured populations considerably less work has been done due to the complexity of these
models. In [23] competitive exclusion is proved for a discrete-time, size-structured, non-linear ma-
trix model of m competing species in a chemostat. The winner is the population that is able to
grow at the lowest nutrient concentration. In [17] age and age-size structured population models
composed of n ecotypes were studied. The authors show that a good measure of ‘ecotype fitness’ is
the product of the reproduction and survivorship functions.

Our paper is organized as follows. In Section 2 we present the population model. In Section 3
we establish existence and uniqueness results for the model. In Section 4 under the closed repro-
duction we provide conditions on the individuals rates which guarantee competitive exclusion,
while under the open reproduction we show that all ecotypes survive. Further discussion and some
numerical results are given in Section 5.

2. The population model
We consider a species with n competing ecotypes. For i = 1,2, ... ,n, we describe the dynamics

of the subpopulation consisting of individuals of the ith ecotype with the following individual size-
structured model of McKendrick—von Foerster type
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(u;), + g:(P(0))(u;), + mi(P(t)u; =0 0<x<oo, t>0,
& (P(0))us(0,1) = Z | rabtrounne >0 1)
e
ui(x,0) =up(x) 0<x< o0.

Here u;(x,1), i=1,2, ... n, is the density of individuals of the ith ecotype having size x at time ¢,
and P(r) = Y7 [o° ui(x, ¢)dx is the total number of individuals in the population at time ¢. The
functions g;, m,, and f3; denote the growth rate, the mortality rate, and the reproduction rate of
an individual in the ith subpopulation, respectively. These individual rates depend on the total
number of individuals in the population. The constant parameter 0 < 7, ; < I represents the prob-
ability that an individual of the jth ecotype will reproduce an individual of the ith ecotype.
Clearly, E;;lyw- => v =1, 1 <i, j<n. In this paper we focus on the asymptotic behavior
of the population in two cases. The first case is that all ecotypes are closed under reproduction in
which offspring always belongs to the same ecotype as the parent, i.e., y;,; = 1 and y;; = 0 for i # .
The second case is that ecotypes are open under reproduction in which individuals of ecotype i
may reproduce individuals of ecotype j.

Linear models of type (1) have been used to describe the dynamics of mosquitofish populations
in rice fields [6]. Simulation studies therein demonstrate that solutions to such models could lead
to population densities that exhibit dispersion and bimodality as field data suggested in [9]. Such
dispersion and bimodality cannot result from the classical size-structured model (i.e., all individ-
uals are assumed to be of the same ecotype) except under some biologically unrealistic conditions
(see [7]). This indicates that the consideration of several ecotypes is important if such size-struc-
tured models are to be used as prediction tools.

Rigorous theoretical developments of inverse problems associated with linear models of type (1)
were given in [7,15,16]. In [8] such inverse methodology was used for estimating the distribution of
individual growth rates based on aggregate population data. Therein, a good fit of the model to
field data was presented. A survey of results and other references for such models can be found
in [5].

3. Existence and uniqueness results
Throughout the discussion we assume that the parameters in (1) satisfy the following:

(H1) g{P) is strictly positive and continuously differentiable for 0 < P < co.

(H2) m4P) is non-negative and continuously differentiable for 0 < P < oo.

(H3) B(P) is continuously differentiable and uniformly bounded for 0 < P <oo with 0 < f8; <
Bar-

(H4) u; € L'(0,00) and w9 > 0.

In the spirit of [11], we use the contraction mapping argument to discuss the existence-unique-
ness of solutions to problem (1). We begin with the definition of the solution.
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Definition 1. A non-negative function u(x,?) = (u1(x,1),ux(x,1), ..., u,(x,1)) on [0,00)x[0,T),
with u(- , 1) integrable is a solution of (1) if P(t) := Y"1, [;~ ui(x,)dx is a continuous function on
[0,T) and for i=1,2, ... ,n,u(x,t) satisfies (1),, (1)3, and the equation

Du;(x,t) = —m;(P())u;(x,t) 0<x<oo, 0<t<T (2)
with
i (Xi(t+ hyx, b)), t + h) — ui(x, )

Du;(x,t) = }111% h , (3)
where Xj(t; x¢, 1) is the solution of the equation for the characteristic curves given by
x(ty) = xo.

From (H1) it follows that the function JX; is strictly increasing. Hence, a unique inverse function
T{x;x0, 1) exists. Let z;(¢) = X(£;,0,0) where (z;(z),7) represents the characteristic curve passing
through (0,0) and dividing the (x, ¢)-plane into two parts.

Let Bi(t) :==>_7, Jo” 7i,B;(P(6))u;(x, t)dx, the inflow of newborns in the ith subpopulation at
time ¢. Using the method of characteristics, we reduce problem (1) to a system of coupled equa-
tions for P(t) and B;().

Integrating (2) along the characteristics, we have

ey Biwxg) [ pends | x <z
(1) gi(P(Ti(O;X,l)))ep< /ri(O:x,z) AP ))d> <al) (5)

i, £) = 10 (X:(0: x, ) oxp (- /0 tml-(P(s))ds> x> ().

Then integrating (5) with respect to x and summing over the indices i = 1,2, ... ,n, we obtain an
integral equation for P(7)

n z(1) Bi T O;X, t
PO=2 [/ PO P (‘ Lo, mi(P(S”“) &

i=1

v :’ w05 0)exp (~ [ m(P(s)as) dx]
-y [ / By b gy / T uo(@eh '"f“’“”d‘dé} . (6)

Similarly, substituting (5) in the definition of B;(¢), we obtain an integral equation for B,(?),
i=1,2,...,n,

n

Bi(t) =Y { O’V,,J/;,<p<t>>3j<,7>e—fi S gy 4 / B PO () T sge| ()

J=1
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Clearly, if P(¢) and B{f) are non-negative continuous solutions of (6) and (7), then u(x, t) defined
by (5) is a solution of (1). Since we have established a correspondence between (1) and (6)—(7), to
obtain the existence and uniqueness results for problem (1), we only need to study the solvability
of the system of integral equations (6) and (7). To this end, for K > [juo|[,1 = D1 [, uio(x)dx, let
Stk ={f(t) € C[0,T] | f(0) = ||uo||;1,0 < f(t) < K}. For each P € St g, let B(¢) € C[0, T] be the
unique non-negative solution of the linear Volterra integral equation (7), and we define the oper-
ator 2 : Srx — CJ0, T] in such a way that 2(P)(¢) is the right-hand side of (6) for these P(¢) and

B{1).

Lemma 2. Suppose that hypotheses (H1)—(H4) hold. Then there exists a value T > 0 for which 2
has a unique fixed point.

Proof. We first show that 2 maps Sr x into itself. To this end, we obtain a function to bound
B{(t). By (7) and the hypotheses (H2), (H3), we have

0< b [ B0+ puliol
Thus, "~
> 80) < DB+ bl
whichj, by Gronwall’s ine]quality implies
> B0) < bl ®)
A corjn_bination of (6) and (8) then yields

t n t
2(P)() </ > Bi(m)dn + ol < nl)’MHuoHLl/ ey + Jluollp < P flugl < K
0 =1 0

provided 7 is very small. R R
We next shqw that 2 is contractive. For any P, P € Srk, letting B; and B; be the solutions of
(7) for P and P, respectively, we have

Z/ - Jim( D g _Z/ ~ [ mi (”)d“dn

+ Z e [e— Jomieonas _ o= [miG ”‘”] dé

<3 [0 ~Bwlar+ 3 [ 50 [ e

A

—mj(f’(S))\dsdn+Z":/Omujo(é)/() |m;(P(s)) — m;(P(s))|dsd¢&.

|2(P)(t) = 2(P)(1)| =
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We now estimate each integral in the last expression of (9). Let |F;(¢)| = |B:(¢) — B,(t)|. Then
from (7) and (8) we have

t t .
— | m;(P(s))ds R — [ (s
i= Z y”ﬁ Bilm)e e gy Vi,jﬁj(P(f))Bj(ﬂ)e Jy s 4

or equivalently,
n t
F01< S B / | F,(n) | dn + Gi(0). (10)
=1

Here

. Z / B,0) | B,(P(0) ~ B(P(0) | dn
X zn: /oo ﬂj(P(t))effg"”(P“))ds _ ﬁj(i)(l‘))efﬁm,-(f’(s))ds o (£)dE

<> b [ B [ () = P asdn + | 20 P01 S [ B

J=1

+i [ | [ Imesn = mesplas 1200 = 5,00 | usterac

< (BumT + BOIIP — P Z / mdn + BymsT + ) 1P — Pl uoll

< (BumkT + Pi) nﬁMTHuOHLl”P Pl = J(T)||P — Pl
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where fi, = SUD b0 R.1<i<n | B(P) | and m = SUD pejo R].1<i<n | m)(P) |. Thus, from (10) we obtain
n t
PO 1< B [0 [an+ IR = Pl
j=1
Summing the above inequality over the indices i = 1,2, ... ,n, we find
n t n .
SR < [ S IF0) | dn I (D)]P =P
=1 =1
which, by Gronwall’s inequality leads to
> Filt) [< nJ(T)e™T||P — P,
=1
Hence, we have

n /t
j=1 70

On the other hand, we find that

By(n) — By(n)|dn < mi (1) TP~ P

Zn:/oﬁj(n)/ \mj(P(s))—mj(P(s))msdnngTHp_szoo/o Zn:ﬁj(n)dn

< mg T uo| ™ ||P — P

and

Zn: /OOO ujo(f)/o |m;(P(s)) — m;(P(s))|dsdé < mx T |juo||1||[P — P| ..

Therefore, 2 is contractive provided that 7 is sufficiently small. The proof is thus completed. [

From the unique existence of the solution P(z) and By(¢) of system (6)—(7) it follows that the solu-
tion of problem (1) must be unique because each u,(x, ) given by (5) is uniquely determined by P()
and B(¢). Thus we have the following local existence result.

Theorem 3. Suppose that hypotheses (H1)-(H4) hold. Then there exists a value T >0 such that
problem (1) has a unique solution up to time T.

In order to establish the global existence result for problem (1), we introduce an upper bound
on P(t) for t € [0, T

Lemma 4. Let u(x,t) be a solution of (1) up to time T. Then P(t) satisfies the following bound:
P(t) < ||uol| €™ for t € [0,T]. (11)

Proof. Let P;(1) = [;" u;(x,t)dx and P(¢) = "/ | P;(¢). Integrating (5) with respect to x, we obtain
an integral equation for Pf?),i=1,2,...,n,
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P = [ B B a - [Caa(e b (12)
Then differentiating (12) with respect to ¢, we have
PO =3 3PP = m(P)Ps (13)
=
Thus,

P1)=3 (Z Db(P) — m,(p))a =S (B(P) - (PP < S BAPIP: < frP(0)

j=1 i=1 i=1

Integrating the above relation over (0,¢) yields (11). O

Theorem 5. Suppose that hypotheses (H1)—-(H4) hold, then problem (1) has a unique solution for all
positive time.

The proof is essentially the same as that of Theorem 3 in [11], and hence is omitted.

4. Asymptotic behavior

Throughout this section, we assume an additional condition on the reproduction and the mor-
tality rates.

(H5) p:(P) is non-increasing and mP) is increasing for 0 < P < oo, and there exists P; such that
Bi(P;) =m(P;), i=1,2,...,n.

In order to study the asymptotic behavior of the population, we consider the following system
of coupled ordinary differential equations:

Pi(t) = iy,}jﬁj(P)Pj —mi(P)P;, P;(0)>0, i=12,...,n (14)
=1

We first show that the population P(¢) is uniformly bounded.

Lemma 6. Let P =maxqc,P; and P=minge,P;. For any 0<&<l, define
I, = [P(1 —¢),P(1 +¢)]. Then there exists a finite time t; such that P € I, for t > t.

Proof. Summing (14) over the indices i = 1,2, ... ,n, we have

n n

P(1) = Z (Z 7B (P) — mi(P))Pi = Z(ﬁi(P) — mi(P))P;. (15)

If P> P(1 +e¢), then B,(P) — mi(P) < —0, with 0, > 0 for i=1.2,...,n. By (15), P’ < —0,P,
i.e., P is strictly decreasing in 7. Hence, there exists a value 7, such that P < P(1 +¢) for ¢ > 1.
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On the other hand, if P < P(1- 8) then f,(P) — m;(P) > 0, with 6, >0 for i=12,...,n. By
(15), P > 0P, ie., P is strictly increasing in t. Hence, there exists a value 7, such that
P> P —¢) fort > ..

Let ¢ = max{Z,1.}. Then P(1 —¢) < P(t) < P(1 +¢) foralls > . O

4.1. Closed reproduction case

In this case, we assume that reproduction is closed under subpopulations, that is, individuals in
the ith subpopulation only reproduce individuals in the ith subpopulation. Hence
vii=1,7,;,=0,i # j,i,j=12,...,n, and (14) takes the form

P, = (B.(P) — my(P))P;, P;(0) >0, i=1,2,...,n (16)
We now introduce a condition on the ratio of the reproduction and mortality rates.

(H6) ﬁl 1612((}12)7 = 27- -, N, for any Pe ]0 = [B’I_)]

The next result shows that under (H6) the subpopulations P», ..., P, become extinct as ¢ — oo.

Lemma 7. Suppose that hypothesis (H6) holds. Then the solution of (16) satisfies that for each
i=2,...,n,P(t) > 0ast— oo.

Proof. We first note that by the continuity of f§; and m;, there exists an (0 < ¢ < 1) such that (H6)
holds for P € I;. In particular, (H6) holds for P = P}, which implies P = P} > P}, i =2,...,n. To
show that fori=2,...,n,P(t) — 0ast— oo, it sufﬁces to show that fori=2, ..., n, I; — 0 as
t — oo for some posmve constant ¢;. To this end, choose 0 < ¢ < & sufficiently small so that for
any P € I, C I; we have

(Uimi(P)—ml(P))<ﬁ1(P)_1> l _m_(P)<ﬂ1( ) <P>>

m (P) 2 m(P)  my(P)
where ¢; = minpe;, 215 ) Set @,(1) = 151(<tt)) satisfies that for ¢ > ¢!
o P PP PP, _ G PB(P) — m(P)Py — PL(B(P) — my(P))P,
i P2 P%
= [0:(B,(P) = mi(P)) = (B, (P) — mi(P))]P;
_ i(P) pi(P)
= o) (1) ~me (1) 2
_iom (PN o (BB BN,
= [im- 1<(P>))< 7)o o) )
1 P)  B(P s
< —Eaim,(P) <m1(P) m,(P)) &, < —4,P; (17)
with positive A;. Integrating (17) from ¢ to ¢ then yields
Pi(1) < Pi(17)e” (18)
P(5;)

where @;(1}) = > 0. Hence, @(t) - 0ast— oco. 0O

Pi(5)
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We now show that P converges to a positive equilibrium, and hence is the winning ecotype. To
this end, we fix ¢ as chosen in the proof of the above theorem.

Theorem 8. Suppose that hypothesis (H6) holds. Then P(t) — P} as t — oc.

Proof. Consider the following initial value problem:

{y’ = (i) =mW))y, £ <1< o0,
w5) = Pi(5).

Clearly, y(t) — P; as t — co. Furthermore, since P; < (f5,(Py) — m;(P;))P;, by comparison
»(t) = Py(¢) for all ¢+ > ¢;. On the other hand, we have

d P\ PV
an <7) — =L (B2 - m(P) — (810~ m0)

= (Bi(P1) = mi(P1)) = (B (v) = mi(v) + (B (O) = my(0) ) _ P

=
= (&) = m )P =) + (BUQ) = m (@)D P, (19)
=
where ( is between P and P; and 5 is between P; and y.
Since (m}({) — B1({)) = ¢ > 0 for t > ¢, rewriting (19) we find
1(d (P L
y-Pi<s (a in (%) + o0 - D) ZP) - (20)

Integrating (20) from ¢ to ¢, we then obtain

t 1 Pl - ' / /
/ () = Pi(m)dn < - (m (yé?) + ; / (m} (0) — ﬁl(C))P_,(n)dn> <M < oo,

where M is independent of ¢, since P(¢) and y,(¢) are both bounded by positive constants, and by
(18) forj=2,...,n, f: P;(t)dt < oo. This implies that f; (y(¢) — Py(¢))dt < oo. Furthermore, it is
easily seen that (y(f)—P;(7)) is bounded on [£F,00). Hence, 3(1)—Py(f) — 0 as ¢ — oo, that is,
P\(t) = Piast—oo. O

4.2. Open reproduction case

In this case, we assume that reproduction is open under subpopulations, that is, individuals in
the ith subpopulation may also reproduce individuals in the jth subpopulation. We will show that
if the graph associated with the matrix [y;;] is strongly connected (the matrix [y, ] is irreducible),
then all ecotypes of the population coexist. To this end, for the convenience of the reader, we as-
sume the following:

(H7) y12>0,79,3>0, ...9,-1,> 0, and y,,; > 0. Otherwise, y;; > 0, 1 <1i,j <n.
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The assumption (H7) implies that the matrix [y, ;] is irreducible, and our following argument can
be easily modified to apply in the case where (H7) is replaced by any other assumption that leads
to strongly connected graph associated with the matrix [y; ].

We now show that under (H7) all ecotypes coexist for all times.

Theorem 9. Suppose that hypothesis (HT) holds. Then there exists a positive constant ¢ such that
lim inf,_.ocp(t) = ¢ fori=12,...,n.

Proof. To obtain the claimed lower bound, it suffices to show that there exists a 7] > 0 such that

P;=cfort > T;,i=1,2,...,n For simplicity, let / = 1,, = [P/2,3P/2] and T = 11, We first
define ¥,(f) = Py(t). Taking (14) into account, we find that for r > T, ¥V, satisfies

¥ = ZV1,jﬂj(P)P/ —mi(P)P1 = y12,(P)Py — m(P)Py = ci(Py+ ¥1) —d ¥y, (21)
=

where ¢ =min{y;,ming ¢ ; fo(P), minp.; m(P)} and d; =2 maxpc; my(P). Then let
Yy(t) = P, + ¥,. ¥, satisfies

'Iﬂz = ZVZ,jﬂj(P)PJ' + qj/l — I’I’EQ(P)PZ = ’})2_’3ﬁ3(P)P3 +Clqu — dlqjl — mz(P)Pz
J=1
= CZ(P3 + 'Pz) — dz'Pz. (22)

Now let ¥3(f) = P; + W,. In a similar manner, we can see that ¥ satisfies

q’g > Cg(P4 + 'P3) — d3'{]3. (23)
Thus, we can define a sequence {¥;(¢)}._, such that fort > T, i=1,2,...,n—1,
'I]; = Ci'PiJr] - d,"{’,’ (24)
and
'IJ,,:P,[—F(P”,]:PZ]_), (25)

where ¢; = min{c¢; 1,7+ iminpe; fi1(P)} and d; = max{d; jmaxpc; m(P)},i=2,...,n— L
In view of (24) and (25), we have

'Ijn—l = En—l - dn—lan—l~

Integrating the above inequality from T to ¢, we find

Cue .
2 (e,
n—1

which implies that for ¢ > 2T, ¥,_; > ¢,_1. Then by means of (24), we find that for ¢ > 37},
¥,_» = ¢,—». Continuing in such a way, finally we obtain that for ¢t > nT;, ¥, > ¢, that is
Py = ¢;. We then make use of (14) to find that for ¢t > nTy,

P:, 2 ynvlﬂl(P)Pl _mn(P)Pn 2 511 _anm (26)
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which, upon integration over (nT}, t) yields that for ¢t > (n+ 1)T;, P, > 5. Repeating this pro-
cess in a backward manner, one can see that there exists a positive constant ¢ such that P; > ¢ for
t > T7=2nT;, i=1,2,...,n Thus, the proof is completed. [

5. Further discussion and numerical results

In the closed reproduction case, from Section 4.1 it is clear that subpopulations with smaller
ratios S P)/m(P) will go to extinction. This leads to the following question: What happens if
two subpopulations have the same largest ratio? We will show that in this case both subpopula-
tions should survive. To this end, since all other subpopulations having smaller ratio will go to
extinction, we will focus on the following subsystem consisting of two subpopulations with the
largest ratio By(P)/m(P) = B P)/my(P)

P = (B(P) —mi(P))P;, P;i(0)>0, i=1.2. (27)

Because the ratios are equal, P; = P5(= P*). If P(0) + P,(0) = P(0) < P*, then P’; > 0, which
means that both P, and P, will increase in t, and hence for t > 0, P{0) < P{¢) < P*,i=12.If
P(0) + P5(0) = P(0) = P*, then P;= P1(0) and P,= P5(0) for ¢ > 0. Finally, if P;(0)+
P5(0) = P(0) > P*, it is easily seen that P* < P(¢) < P(0) for ¢ = 0. To show that in this case li-
m inf,_p(,) > 0 for i = 1,2 as well, we argue as follows: From the proof of Lemma 7 we see that
for any arbitrary positive constant o, and for P* < P(¢) < P(0)

a0) < (oms(P) - m(P) (273 1).

Choose g, large enough such that a,my(P) — m(P) = 0 for P € [P*, P(0)]. Then @'5(¢) <0,
which yields P§'(¢)/P;(t) < ®,(0). Hence if lim inf, .. P(¢) = 0, then liminf, . . ,P5(r) = 0. Using
similar argument, it follows that if lim inf, _, . P>(#) =0, then lim inf,_ . P;(¢) =0. Since
P* < P(t) < P(0), we obtain lim inf,_,, P{?) > 0,i=1,2, and therefore both subpopulations
should survive.

Although we have shown that in the case of two equal largest ratios, both subpopulations sur-
vive, the exact asymptotic behavior of this two-ecotype system remains complicated and may de-
pend on the initial conditions P{0), i =1,2. For example, suppose that ;(P) = f>(P)=1 and
my(P) = my(P) = P, then system (27) reduces to the following system:

P.=(1—P)P, P(0)>0, i=1,2.

Note that the equilibrium of this system satisfies P, + P, = P = 1. Hence, there is an infinite
number of equilibrium points with 0 < P <1 being arbitrary and P,=1-P,. Adding the two
equations, one can easily find that P satisfies a logistic dynamics and P — 1 as t — oo. Further-
more, dividing the two equations, one has dP;/dP, = P,/P, and therefore P,/P, = P(0)/P5(0).
From this one can see that P, — P;(0)/P(0) and P, — P»(0)/P(0) as t — oo.

In the open reproduction case, if the kth (1 < k < n) node in the graph associated with the
matrix [y;;] is not connected to any other node, that is, y.,=1 and vy ;=1
forj=1,...,k—1,k+1,...,n, then the kth subpopulation may become extinct. To show this,
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notlclng S i =1, it follows that y;,=0 for i=1,...,k—1,k+1,...,n. Let
P= Z P+Z, w1 Pi- Summing (14) over the indices i =1, ...,k — 1,k+1,...,n, we find

n

Z ZV,, i(P) —my(P) | P; = Z(ﬁi(P) — m;(P))P; = (B(P) — m(P))P, (28)
w \ i
where f=min{f; ..., Br_1,Bi+1, ..., Bn} and m = max{my, ... ,m_y, M1, -, m,}.

As before, we impose an assumption on the ratio of the reproduction and mortality rates.

B(P) = m(P).

P

(H8) For any P €I, = [P,P], mm

=

§ |

As in the proof of Lemma 7, we choose ¢(0 < ¢ < ¢) small enough so that for any P € I, C I;

mr-snlf) e (5 -25)

where ¢ = minpe; 2% wp- We then introduce an auxiliary function @(r) = ~. @ satisfies that for
t = t*

E

PSP — P:P’ _ OPLB(P) — my(P))P — P{(B(P) — m(P))P
) X PZ

P
(P) — mi(P)) — (B(P) — m(P))]®

[o (B
i) o
< —%amk(P) (% _ 51’;(;))) b < — )b (29)
g(29)

from ¢ to t then yields

P =

~ 3=

with 4> 0. Integratin
D(1) < D(t;)e 1),

which implies @(¢) — 0, and hence P,(7) — 0 as t — oo. Clearly, if the remaining n—1 ecotypes sat-
isfy (H7) (with n replaced by n—1), then using previous arguments one can see that they coexist.
Thus we have the following result.

Theorem 10. If the kth subpopulation satisfies yi = 1,7, ;= 0forj=1,... . k=1,k+ 1,... ,nand
hypothesis (H8) holds, then it will eventually become extinct. Moreover, if the other n — 1 ecotypes
satisfy (HT), they will coexist.

The next numerical example illustrates that assumption (H8) is sufficient but not necessary for
the extinction of the kth subpopulation. In this example we let n=3,4, =2.7,f,=2.4 and
Pz =2.1. We choose the mortality functions as m; = 0.054P, m, = 0.096P and m; = 0.07P, while
the probabilities 7, ; are selected as y,; =0.4,7,,=0.6, y;3=0,72; =0.6,72,=0.4,7,3=0,
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73.1 = 0,73, =0 and y; 5 = 1. In Fig. 1 we present the solution to this system of differential equa-
tions with the initial conditions P;(0) = P»(0) = 0.5 and P;(0) = 1. The figure shows that P; be-
comes extinct although it can be easily verified that hypothesis (H8) does not hold for this
example.
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Fig. 2. Survival of P; and extinction of Py and P».
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Our last numerical example indicates that if (HS) is not satisfied, then the kth subpopulation
may possibly survive while the subpopulations Py, ..., Pi_1, Pit1, ..., P, can become extinct.
In this example we still let n =3, ; =2.7,, = 2.4 and i3 = 2.1. We choose the mortality func-
tions as m; = 0.054P,m, = 0.1091P and m; = 0.0583 P, while the probabilities y; ; are selected as
711 =0.1,712=0.9,713=0, 21 =0.9,72,=0.1,923=10,731 = 0,732 =0 and y33=1. In Fig. 2
we present the numerical results for the initial conditions P;(0) = P»(0) =0.5 and P3(0) =1.
The figure shows that P; survives while P, and P, die out. It is worth pointing out that even
though P, dies out, % > Z—i for this choice of functions.
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