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Abstract. We study an SIR epidemic model with a variable host population size. We prove
that if the model parameters satisfy certain inequalities then competition between n patho-
gens for a single host leads to exclusion of all pathogens except the one with the largest
basic reproduction number. It is shown that a knowledge of the basic reproduction numbers
is necessary but not sufficient for determining competitive exclusion. Numerical results il-
lustrate that these inequalities are sufficient but not necessary for competitive exclusion to
occur. In addition, an example is given which shows that if such inequalities are not satisfied
then coexistence may occur.

1. Introduction

A very important principle in theoretical biology is that of competitive exclusion:
no two species can indefinitely occupy the same ecological niche. Discussions on
the meaning of competitive exclusion and ecological niche have been central to
ecology [19,21,25].

The validity of such a principle has been proved for many population models.
For example, in [3,26,33] the authors study a competitive Lotka-Volterra system
of equations and exhibit a simple algebraic criteria on the parameters which guar-
antee that all but one of the species are driven to extinction. These results have been
extended in [1] to a generalized logistic model. Using the theory of weak conver-
gence of probability measures the authors show that such a principle is valid for the
model they investigated. In [2], a predator–prey Lotka-Volterra model composed
of many predator–prey subpopulations was studied. Therein, it was shown that all
subpopulations die out except for the predator–prey pair that optimizes the growth
to mortality ratio. In [31], competitive exclusion is proved for a discrete-time, size-
structured, nonlinear matrix model of m competing species in a chemostat. The
winner is the population which is able to grow at the lowest nutrient concentration.

Recently, attention has focused on understanding the mechanisms that lead to
coexistence, competitive exclusion and coevolution of pathogen strains in infectious
diseases. This is especially important for the development of disease management

A.S. Ackleh: Department of Mathematics, University of Louisiana at Lafayette, Lafayette,
LA 70504-1010, USA. e-mail: ackleh@louisiana.edu

L.J.S. Allen: Department of Mathematics and Statistics, Texas Tech University, Lubbock,
TX 79409-1042, USA. e-mail: lallen@math.ttu.edu

Key words or phrases: Competitive exclusion – SIR epidemic model



154 A.S. Ackleh, L.J.S. Allen

strategies. In [6], Anderson and May state that transmission rate and virulence are
not independent and that evolution does not necessarily lead to reduced virulence.
Levin and Pimentel [20] model two pathogen strains; they show that an excessively
virulent pathogen strain can prevail if it can invade a host that harbors the less viru-
lent strain, but not vice versa; such behavior is referred to as superinfection. In [11],
Bremermann and Thieme consider an n-pathogen, single host model. They show
that pathogen strains with differing levels of virulence die out asymptotically except
for those that optimize the basic reproduction number. From these three classical
papers, there followed numerous other papers examining the relationships between
evolution and virulence or coexistence and competitive exclusion (e.g., [7,14–18,
22–24,27,28,32]). For example, models with coinfection, where the host harbors
multiple infections at one time (e.g., [23,24,32]) and models with superinfection,
where less virulent strains are replaced by more virulent strains (e.g., [16,17,22,
27]), have demonstrated a variety of coexistence and virulence evolution results.
In addition, strong density regulation has been shown to result in coexistence of
more than one strain [7,16]. This is due to the different ways in which host density
affects the transmission rate and transmission period [7].

The goal of this paper is to study competitive exclusion in an n-pathogen, single
host model, where each pathogen may invade the host population. We do not con-
sider coinfection nor superinfection, only density-dependent host regulation. Our
model is a generalization of the two-pathogen model studied by Andreasen and
Pugliese [7]. It is shown in our model that a knowledge of the basic reproduction
numbers is necessary but not sufficient to determine competitive exclusion. The
basic reproduction numbers are important in determining successful invasion of a
pathogen but are not sufficient to determine extinction of particular strains.

This paper is organized as follows. In Section 2 we describe the model while in
Section 3 we prove the competitive exclusion principle. Section 4 is devoted to a
numerical example which illustrates that the conditions of Section 3 imposed on the
model parameters are sufficient but not necessary for competitive exclusion. While
in Section 5 we discuss an example in which survival of strains which do not op-
timize the reproduction number is possible. In the Appendix, we give a dynamical
systems proof for the persistence of the dominant strain.

2. The model

We describe an SIR epidemic model which is based on a modification of the models
by Anderson and May [5] and Bremermann and Thieme [11]. In the Anderson and
May model exponential growth of the host population is allowed. This is in general
not very realistic for a long period of time. In the Bremermann and Thieme model
they guarantee limited host populations by assuming that the birth rate is a strictly
decreasing function of the total population size. Here we assume that there is a
density-dependent death rate, b−f (N), a constant birth rate, b, and a logistic-type
population growth rate. When the disease is not present the dynamics of the host
population are described by the following differential equation:

Ṅ(t) = Nf (N),

where Ṅ(t) = dN/dt . We assume that f (N) satisfies the following conditions:
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(A1) f ∈ C1[0, ∞).
(A2) 0 < f (0) < b.
(A3) f (N) is decreasing for N > 0.
(A4) There exists a constant K > 0 such that f (K) = 0.

For example, the following logistic growth rate function satisfies the above con-
ditions: f (N) = r(1 − N/K), where 0 < r < b. Similar assumptions have been
made in other epidemic models (see e.g., [4,7,9,34]).

The model we study is of SIR type, in that the host population consists of sus-
ceptibles, S, individuals infected with strains 1 through n, Ij , j = 1, 2, . . . , n, and
immune or removed individuals, R. In addition, it is assumed that there is mass
action horizontal transmission. The model has the form:

Ṡ(t) = S


f (N) −

n∑
j=1

βj Ij


 +

n∑
j=1

bj Ij + bR

İj (t) = Ij

(
f (N) − bj + βjS − γj − µj

)
, j = 1, 2, . . . , n,

Ṙ(t) = R (f (N) − b) +
n∑

j=1

γj Ij

N = S + R +
n∑

j=1

Ij .

(1)

In model (1), b is the birth rate, f (N) is the per capita growth rate, and b − f (N)

is the natural death rate. Infected individuals may transmit the disease to their
offspring–vertical transmission. Hence, the birth rate of the j th infected class is
divided into two parts: bj , denoting those born susceptible, and b − bj ≥ 0, de-
noting those born infected. The parameter βj denotes the transmission rate for the
j th strain, while γj is the recovery rate from infection with strain j . Finally, µj

represents the disease-related death rate for strain j . All of the parameters, b, bj ,
µj , βj , and γj , j = 1, 2, . . . , n, are assumed to be positive. Models of the type (1)
with total cross immunity and no superinfection have been applied to some sexually
transmitted diseases (e.g., [14]).

Model (1) differs from the model of Bremermann and Thieme [11]. In [11],
they assume a density-dependent birth rate g(N) instead of a density-dependent
death rate. In addition, no density-dependent birth or death rates are assumed in
the infected and removed classes and the change in the susceptible subpopulation
satisfies

Ṡ(t) = Ng(N) − dS − S

n∑
j=1

βj Ij ,

where d is the natural death rate. The example discussed in Section 5 shows that
our model exhibits different behavior than their model. In particular, coexistence
occurs when there is strong density regulation affecting the death rate.
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In the presence of the disease, the population size N in our model is described
by the following differential equation:

Ṅ(t) = Nf (N) −
n∑

j=1

µjIj . (2)

We assume that S(0) > 0, Ij (0) > 0, j = 1, 2, . . . , n, and R(0) ≥ 0. Clearly,
solutions to (1) exist and are positive for t > 0. Furthermore, one can easily deduce
that solutions are bounded. In fact,

Ṅ(t) ≤ Nf (N),

and since the solution y(t) to the differential equation ẏ(t) = yf (y) with y(0) =
N(0) satisfies limt→∞ y(t) = K , it follows by comparison that lim supt→∞ N(t) ≤
K .

The competitive exclusion principle is verified in the next section for the basic
model (1).

3. Competitive exclusion

Let cj = bj + γj + µj > f (0). Then the basic reproduction number for strain j

is given by

R0,j = βj

cj

K, j = 1, 2, . . . , n.

We define

B0,j = βjK

cj − f (0)
, j = 1, 2, . . . , n,

and assume that for each j = 2, . . . , n, one of the following conditions holds:

R0,1 > R0,j and cj > c1, (3)

or

B0,1 > B0,j and β1 > βj . (4)

The following stronger conditions imply (3) or (4):

R0,1 > R0,j and B0,1 > B0,j .

The conditions in (3) are satisfied for all j = 2, . . . , n, for example, if strain 1 has
the largest basic reproduction number R0,1 and the smallest disease-related death
rate, recovery rate, and birth rate. The ratio B0,j can be thought of as a reproduction
number also. When bj = b and f (0) = r = b − d, where r is the intrinsic growth
rate and d is the density-independent death rate,

B0,j = βjK

d + γj + µj

.
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In addition, if the total population size is constant, b = d, then B0,j = R0,j . The
conditions in (4) are satisfied for all j = 2, . . . , n, for example, if strain 1 has the
largest reproduction number B0,1 and the largest transmission rate.

We remark that Bremermann and Thieme [11] only assumed that R0,1 > R0,j

to prove the competitive exclusion principle. The example given in Section 5 shows
that this condition alone is not sufficient for competitive exclusion to occur in our
model. Our first result in this section is to show that the number of susceptibles,
S(t), is bounded below by a positive constant.

Lemma 1. There exists a constant S > 0 such that S(t) ≥ S for t ∈ [0, ∞).

Proof. First note that if N(t) > K for all t ≥ 0 then we have that limt→∞ N(t) =
K . In this case one can easily show that S(t) → K as t → ∞ and hence the result
follows. To this end, we assume for the rest of the proof that there exists a t0 ≥ 0
such that N(t0) ≤ K . Then it is clear that N(t) ≤ K for all t ≥ t0. Now, suppose
there does not exist such a constant S. Then there exist monotone sequences of
numbers {εi}∞i=1 and {ti}∞i=1 satisfying limi→∞ εi = 0, ti ≥ t0, i = 1, 2, . . . , and
limi→∞ ti = ∞ such that S(ti) = εi > 0 and Ṡ(ti) ≤ 0.

Hence for sufficiently large ti we have

0 ≥ Ṡ(ti) = S(ti)f (N(ti)) +
n∑

j=1

Ij (ti)[bj − εiβj ] + bR(ti)

≥
n∑

j=1

Ij (ti)[bj − εiβj ] > 0,

a contradiction. This establishes the result. ��
Next we show that all the strains, except possibly one, die out.

Theorem 2. Assume that for each j = 2, . . . , n, either (3) or (4) holds. Then, for
j = 2, 3, . . . , n, limt→∞ Ij (t) = 0.

Proof. We divide the proof into two cases. First assume that the conditions in (3)

hold for a fixed j ∈ {2, . . . , n} and define �1(t) = I

1
cj

j

I

1
c1

1

. Using the assumptions on

f , the previous Lemma, and the fact that lim supt→∞ N(t) ≤ K we can choose t̄

large enough such that f (N(t))( 1
cj

− 1
c1

) ≤ 1
2

(
β1
c1

− βj

cj

)
S for all t ≥ t̄ . Hence,

for any t ≥ t̄

d

dt
�1(t) =

1
cj

I

1
cj

j (f (N) + βjS − cj )I

1
c1

1 − 1
c1

I

1
c1

1 (f (N) + β1S − c1)I

1
cj

j

I

2
c1

1

= 1

cj

�1(t)(f (N) + βjS − cj ) − 1

c1
�1(t)(f (N) + β1S − c1)
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= �1(t)

(
f (N)

cj

− f (N)

c1
+

(
βj

cj

− β1

c1

)
S

)

≤ 1

2
�1(t)

(
βj

cj

− β1

c1

)
S.

Expressed in terms of logarithms,

d ln �1(t)

dt
≤ 1

2

(
βj

cj

− β1

c1

)
S.

This latter inequality implies that

�1(t) ≤ �1(0)e

1
2

(
βj
cj

− β1
c1

)
S t

.

Thus,

I

1
cj

j (t) ≤ I

1
c1

1 (t)�1(0)e

1
2

(
βj
cj

− β1
c1

)
S t

.

Since I1 is bounded, S > 0, and
(

βj

cj
− β1

c1

)
< 0 we have limt→∞ Ij (t) = 0.

Now suppose that for the same j condition (4) holds and define �2(t) = I

1
βj

j

I

1
β1

1

.

Using assumption (A3) we see that for all t > 0

d

dt
�2(t) = �2(t)

(
f (N)

βj

− f (N)

β1
+

(
c1

β1
− cj

βj

))

≤ �2(t)

(
f (0)

(
1

βj

− 1

β1

)
+

(
c1

β1
− cj

βj

))

= �2(t)

(
c1 − f (0)

β1
− cj − f (0)

βj

)
.

Hence, using (4) and arguing as before we get limt→∞ Ij (t) = 0.
Since j was arbitrary, we have limt→∞ Ij (t) = 0 for j = 2, . . . , n. ��
We have so far proved that under the conditions (3) or (4) the pathogen strains

with suboptimal reproduction numbers R0,j or B0,j , j = 2, 3, . . . , n, die out, but
we did not show whether the disease persists. This will depend on the reproduction
number R0,1. The next result proves that if R0,1 > 1, then the disease persists.

Theorem 3. Assume that for each j = 2, . . . , n, either (3) or (4) holds and R0,1 >

1, then lim inf t→∞ I1(t) > 0.

Proof. Assume that I1(t) → 0 as t → ∞. Since N(t) ≥ S(t) ≥ S > 0 then it

follows from Theorem 2 that for j = 1, 2, . . . , n,
Ij (t)

N(t)
→ 0 as t → ∞. Hence,

we have
∑n

j=1 µj
Ij (t)

N(t)
→ 0 as t → ∞. From this one can verify that N(t) → K

as t → ∞. This implies that f (N(t)) → 0 and hence R(t) → 0 as t → ∞. Thus
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S(t) → K as t → ∞. From the I1 equation in (1) we see that İ1(t)
I1(t)

→ β1K−c1 > 0
which says that I1 grows exponentially as t → ∞. This contradiction implies that

lim sup
t→∞

I1(t) ≥ ε̄ > 0.

Now assume that lim inf t→∞ I1(t) = 0. Then for any 0 < ε < ε̄ there exists two
sequences tm, sm → ∞ as m → ∞ such that t1 < s1 < t2 < s2 < · · · < tm <

sm < · · · and

I1(tm) = ε, I1(sm) = ε

m
,

ε

m
≤ I1(t) ≤ ε tm ≤ t ≤ sm.

From the I1 equation in (1) we get that there exists a positive constant A such that

İ1

I1
≥ −A.

Integrating from tm to sm we obtain

ln
1

m
≥ −A(sm − tm).

Letting m → ∞ we obtain that sm − tm → ∞. Let τm = sm − tm. Then clearly
τm → ∞.

For any 0 < δ < K we can choose ε > 0 small enough such that the following
three inequalities hold for tm ≤ t ≤ tm + τm and m sufficiently large:

f (K − δ) −
n∑

j=1

µj

Ij (t)

N(t)
> 0, (5)

δ(f (K − δ) − b) +
n∑

j=1

γj Ij (t) < 0, (6)

n∑
j=1

Ij (t) ≤ δ. (7)

These inequalities are a consequence of the choice of ε and 0 < f (K − δ) < b,
where on the subintervals, [tm, tm + τm], the summations with Ij (t) are sufficiently
small. Since, lim supt→∞ N(t) ≤ K , then for any sufficiently large m we have that

N(t) ≤ K + δ, tm ≤ t ≤ tm + τm.

Furthermore, using (2) and (5) we see that there exists a τ̄ such that

N(t) ≥ K − δ, tm + τ̄ ≤ t ≤ tm + τm. (8)

From the R equation in (1) and (6), we obtain

R(t) ≤ δ, tm + τ ≤ t ≤ tm + τm, (9)
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provided we choose τ(> τ̄ ) large enough. Hence, it follows from (7)–(9) that

S(t) = N(t) − R(t) −
n∑

j=1

Ij (t) ≥ K − 3δ, tm + τ ≤ t ≤ tm + τm.

Now, choose 0 < δ < K small enough such that

f (K + δ) + β1(K − 3δ) − c1 = η > 0. (10)

Note that the expression on the left-hand side of (10) is positive because it can be
made sufficiently close to β1K − c1 > 0. Then from the I1 equation in (1) we get

ε ≥ I1(tm + τm) = I1(tm)e
∫ tm+τ
tm

(f (N)+β1S−c1)dt
e
∫ tm+τm
tm+τ (f (N)+β1S−c1)dt

≥ I1(tm)e(f (K+δ)−c1)τ eη(τm−τ).

A contradiction, since τm → ∞. ��
The next result shows that if for each j = 2, . . . , n, either (3) or (4) are satisfied

but R0,1 < 1, then solutions approach the disease-free equilibrium.

Theorem 4. Assume that for each j = 2, . . . , n, either (3) or (4) holds and R0,1 <

1, then

lim
t→∞(S(t),

n∑
j=1

Ij (t), R(t)) = (K, 0, 0).

Proof. Define u = I1/N . Then

u̇ = u


β1S − c1 + µ1u +

n∑
j=2

µj ij


 , (11)

where ij = Ij /N , j = 2, . . . , n. Note that since S(t) ≥ S, then there exists a
δ > 0 such that 0 < u(t) ≤ 1 − δ.

If the inequality

β1K − c1 + µ1 < 0 (12)

is satisfied, choose a positive constant ε1 sufficiently small such that

a1 = β1(K + ε1) − c1 + µ1 + ε1 < 0.

For such a choice of ε1 choose T1 large enough such that for t ≥ T1,

N(t) ≤ K + ε1,

n∑
j=2

µj ij (t) < ε1. (13)

From (11) and (13) it follows that u̇ ≤ a1u for t ≥ T1. Hence, limt→∞ u(t) = 0.
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Suppose (12) does not hold; that is,

β1K − c1 + µ1 ≥ 0.

Let

r1 = c1 − β1(K + ε1) − ε1

µ1
= c1 − β1K

µ1
− ε̃1 ≤ 1,

where ε̃1 = (β1ε1 + ε1)/µ1 > 0. Clearly ε1 can be chosen sufficiently small (and
T1 sufficiently large) such that

r1 > max{0, 1 − β1K/µ1}. (14)

Hence, for t ≥ T1,

u̇ ≤ µ1u(−r1 + u).

If for any time T > T1, u(T ) < r1, then limt→∞ u(t) = 0. But if u(t) ≥ r1 for
t > T1, then we obtain the following upper bound for S(t):

S(t) < N(t) − I1(t) ≤ N(t)(1 − r1).

Next, if the following inequality holds:

β1(1 − r1)K − c1 + µ1 < 0, (15)

choose a positive constant ε2 < ε1 sufficiently small and T2 > T1 sufficiently large
such that

a2 = β1(1 − r1)(K + ε2) − c1 + µ1 + ε2 < 0,

and for t ≥ T2,

N(t) ≤ K + ε2,

n∑
j=2

µj ij (t) < ε2.

Hence, for t ≥ T2 it follows that u̇ ≤ a2u, and limt→∞ u(t) = 0.
However, if the inequality (15) does not hold; that is,

β1(1 − r1)K − c1 + µ1 ≥ 0.

Then, using similar arguments as above, we define

r2 = c1 − β1(1 − r1)(K + ε2) − ε2

µ1
= c1 − β1(1 − r1)K

µ1
− ε̃2 ≤ 1,

where ε̃2 = [β1(1 − r1)ε2 + ε2]/µ1 > 0. In addition,

r2 = c1 − β1K

µ1
+ β1K

µ1
r1 − ε̃2 > r1 + β1K

µ1
r1 = r1

(
1 + β1K

µ1

)
= r1(1 + β̃),
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where β̃ = β1K/µ1. Because u̇ ≤ µ1u(−r2 + u) for t ≥ T2, if for any time
T > T2, u(T ) < r2, we have limt→∞ u(t) = 0. But if u(t) ≥ r2 for t ≥ T2, then
S(t) ≤ N(t)(1 − r2). We can choose a positive constant ε3 < ε2 sufficiently small
and T3 > T2 sufficiently large such that

a3 = β1(K + ε3)(1 − r2) − c2 + µ1 + ε3 < 0,

and for t ≥ T3, N(t) ≤ K + ε3, and
∑n

j=2 µj ij (t) ≤ ε3.
Again, we have two cases. If

β1(1 − r2)K − c1 + µ1 < 0,

then, in a manner similar to the preceding arguments, it can be shown that
limt→∞ u(t) = 0. But if

β1(1 − r2)K − c1 + µ1 ≥ 0,

we define

r3 = c1 − β1(1 − r2)(K + ε3) − ε3

µ1
= c1 − β1(1 − r2)K

µ1
− ε̃3 ≤ 1,

where

r3 > r1 + β̃r2 > r1 + β̃r1(1 + β̃) = r1(1 + β̃ + β̃2).

We continue in this manner, obtaining a monotone sequence bounded above by one,
0 < r1 < r2 < · · · < rn ≤ 1, and having the property that

rn > r1

n−1∑
k=0

β̃k.

If β̃ = β1K/µ1 ≥ 1, then limn→∞ rn = ∞ and if β̃ < 1, then by choice of r1
(see (14)),

lim
n→∞ rn ≥ r1

1 − β̃
= r1

1 − β1K/µ1
> 1.

Therefore, there must exist an integer m with rm > 1 − δ ≥ u(t) such that

u̇ ≤ µ1u(−rm + u).

It follows that limt→∞ u(t) = 0. Thus, limt→∞
∑n

j=1 Ij (t) = 0, and as shown in
the proof of Theorem 3, limt→∞ N(t) = K , limt→∞ R(t) = 0, and limt→∞ S(t) =
K . This establishes the desired result. ��



Exclusion and coexistence in epidemics 163

4. Numerical results for competitive exclusion

In this section, we consider the logistic function f (N) = r(1 − N/K), where
0 < r < b. We assume that the carrying capacity is K = 100, the birth rate is
b = bj = 1, and the intrinsic growth rate is r = 0.7. Furthermore, we let the recov-
ery rate be γj = 0.5. If the time unit is years, then the average length of infection is
about one year. We assume that the transmission rate βj depends on the virulence
or disease-related death rate µj (see, e.g. [10,11,22–24,27]). In particular, we let

βj = aµj

c + µj

.

Let a = 0.075, c = 0.2, and µj ∈ [0.1, 1]. Then

R0,j = 7.5µj

(0.2 + µj )(1.5 + µj )
and B0,j = 7.5µj

(0.2 + µj )(0.8 + µj )
.

If the µj are restricted to [0.1, 0.4], then condition (4) is satisfied for all j =
2, . . . , n and the dominant strain is the one with the largest disease-related death
rate. This strain also has the highest transmission rate. However, if the µj are re-
stricted to [0.55, 1], then condition (3) is satisfied for all j = 2, . . . , n and the
dominant strain is the one with the smallest disease-related death rate. If there are
strains whose disease-related death rates are in the interval [0.1, 1], then it may be
the case that conditions (3) and (4) are not satisfied. For example, suppose there
are five strains satisfying µj = 0.05j + 0.35, j = 1, 2, 3, 4, 5. In this example,
conditions (3) and (4) are not satisfied but the third strain, where µ3 = 0.5, appears
to be the dominant strain. For the initial conditions Ij (0) = 1, j = 1, 2, 3, 4, 5,
S(0) = 1, and R(0) = 0, solutions to this five strain model are graphed in Figure 1.
It is clear from this figure that competitive exclusion occurs. This five strain exam-
ple shows that the conditions (3) and (4) are sufficient but not necessary conditions
for competitive exclusion to occur.

In the next section, we give an example where the conditions of Theorem 3 are
not satisfied, but where coexistence occurs.

5. A coexistence case

In this section we consider the following case with two strains, i.e., n = 2. Let
f (N) = r(1−N/K), where the carrying capacity is K = 100 and intrinsic growth
rate is r = 4. Suppose the birth rate b = bj = 6 and the transmission rates and re-
covery rates for the two strains are β1 = 2, β2 = 1, and γ1 = 1 = γ2, respectively.
Suppose strain 1 with the largest transmission rate also has the highest virulence
or disease-related death rate, µ1 = 10 and µ2 = 3. Clearly in this case the repro-
duction number R0,1 = 11.765 > 10 = R0,2 but c1 = 17 > 10 = c2. However,
B0,1 = 15.385 < 16.667 = B0,2 but β1 > β2. Hence, neither conditions (3) nor
(4) are satisfied. Simple computations show that a positive steady state exists for
this case and is given by:

S = 7, I1 = 4.929, I2 = 8.571, and R = 4.5.
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Fig. 1. Competitive exclusion when conditions (3) and (4) are not satisfied.
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Fig. 2. Coexistence of the strains I1(t) and I2(t).

Furthermore, local stability analysis proves that this positive steady state is locally
asymptotically stable. In particular, the Jacobian matrix has eigenvalues given by

λ1 =−8.657 + 6.338i, λ2 =−8.657 − 6.338i, λ3 =−1.899, and λ4 =−0.216.

Our numerical results indicate that this equilibrium is indeed globally asymptoti-
cally stable. In Figure 2 we present the two coexisting strains.
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Appendix: A dynamical systems proof of theorem 3

To show lim inf t→∞ I1(t) > 0 if for each j = 2, . . . , n, either (3) or (4) holds
and R0,1 > 1, we apply dynamical systems theory (see e.g., [12,13,30]). To this
end, note that the system of n + 2 differential equations has only two equilibria
points satisfying Īj = 0 for j = 1, 2, . . . , n. One equilibrium is the extinction
equilibrium, E0 = (0, 0, . . . , 0), where N̄ = 0 and the other one is the disease-free
equilibrium, E1 = (K, 0, 0, . . . , 0), where S̄ = K = N̄ .

The Jacobian matrix or variational matrix at the extinction equilibrium E0
satisfies

V0 =




f (0) b b · · · b

0 f (0) − c1 0 · · · 0
0 0 f (0) − c2 · · · 0
...

...
...

. . .
...

0 γ1 γ2 · · · f (0) − b




.

Clearly there is one positive eigenvalue, f (0), with corresponding eigenvector
(1, 0, 0, . . . , 0)t and the remaining eigenvalues are negative: f (0) − cj < 0,
j =1, 2, . . . , n, and f (0)−b<0 with corresponding eigenvector (1, 0, 0, . . .,−1)t .
The direction of flow in the S-R phase plane is shown in Figure 3.

                              S
                                 E1

                                            E0                                             R

Fig. 3. S-R phase plane.
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The variational matrix at the disease-free equilibrium E1 satisfies

V1 =




Kf ′(K) K(f ′(K) − β1) + b K(f ′(K) − β2) + b · · · Kf ′(K) + b

0 β1K − c1 0 · · · 0
0 0 β2K − c2 · · · 0
...

...
...

. . .
...

0 γ1 γ2 · · · −b




.

If R0,j < 1 for j = 1, 2, . . . , n, then all of the eigenvalues are negative and the
disease-free equilibrium is locally asymptotically stable. However, if R0,1 > 1,
then there is at least one positive eigenvalue. The eigenvalues are Kf ′(K) with
corresponding eigenvector (1, 0, 0, . . . , 0)t , βjK − cj , j = 1, 2, . . . , n, and −b

with corresponding eigenvector (1, 0, 0, . . . , −1)t . These facts will be used below
to show that lim inf t→∞ I1(t) > 0 if R0,1 > 1.

Suppose there exists a solution with lim inf t→∞ I1(t) = 0. Denote the pos-
itive orbit as �(X0, t), where X0 is the vector of initial conditions, S(0) > 0,

Ij (0) > 0, j = 1, 2, . . . , n, and R(0) ≥ 0. Since limt→∞ Ij (t) = 0 for j > 1, the
omega-limit set ω(X0) of �(X0, t) must intersect the positive quadrant of the S-R
plane, 
SR = {(S, 0, 0, . . . , R)|S ≥ 0, R ≥ 0}, in a nontrivial point. The omega-
limit set cannot equal E1 because then limt→∞ Ij (t) = 0, j = 1, 2, . . . , n, and
limt→∞ N(t) = K = limt→∞ S(t). However, from the I1 differential equation in
(1) it follows that İ1(t) > I1(t)(β1K −c1 −ε) > 0 for t > T sufficiently large and
ε sufficiently small which contradicts the fact that I1(t) approaches zero. Thus, the
omega-limit set must intersect 
SR in a point P different from E0 and E1. Because
ω(X0) is closed and invariant, it must contain the entire orbit containing P that lies
in 
SR; this means E1 ∈ ω(X0).

If P lies on the S-axis, P 	= E0 and P 	= E1, then either the orbit along the
S-axis which is above or below E1 belongs to ω(X0). Either case is impossible
because if the orbit on the S-axis, below E1, lies in ω(X0), so does the origin and if
the orbit along the S-axis, above E1, lies in ω(X0), then solutions are unbounded.

If P lies in the interior of 
SR or on the R-axis, then the orbit containing P

is unbounded, again a contradiction. In all cases, there is a contradiction; hence,
it is impossible for ω(X0) to contain a point P 	= E0, P 	= E1, P ∈ 
SR . Thus,
lim inf t→∞ I1(t) > 0.
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