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Preface

In biological population, individuals may differ in a ‘structure’ variable such as age, size,

weight and other quantities that influence individual development–growth, reproduction

and mortality. Modelling such kind of phenomenon is structured population model, which

bridges the gap between mechanisms at the individual level and behavior at the level of

the population.

In a typical direct problem one prescribes model ingredients that describe mechanisms

at the individual level, lifts the model to the population level, and finally studies phe-

nomena at the population level. In the inverse problem the situation is reversed. Using

knowledge about behavior at the population level one wants to deduce the underlying

mechanisms at the individual level.

Lots of literature have been contributed to the development of theoretical and com-

putational methods for the direct and inverse problem of different structured population

models. However, there are still lots of open problems that need to be explored, which

inspire us to study some of them.

A hierarchical size-structured model with nonlinear growth, mortality and reproduc-

tion rates is studied in Chapter 1. A finite difference approximation is developed to

establish the existence-uniqueness of the weak solution to the model. Simulations in-

dicate that the monotonicity assumption on the growth rate is crucial for the global

existence of weak solutions to the hierarchical model.

The inverse problem in a coupled system of nonlinear size-structured populations



vi

is studied in Chapter 2. A least-squares technique is developed for identifying unknown

parameters and its Convergence results are also established. Ample numerical simulations

and statistical evidence are provided to demonstrate the feasibility of this approach.

A nonlinear size-structured phytoplankton-zooplankton aggregation Model is stud-

ied in Chapter 3. A monotone approximation method is constructed to establish the

existence-uniqueness of the weak solution to the model.

We also provide a numerical solver in this dissertation for the general size-structured

population model which is a generalization of the models discussed in Chapter 1 and

Chapter 2. This solver was written by using Matlab to be a user-friendly package which

was compiled to a stand-alone one. In Chapter 4, we give some instructions about how

to use this package and how we compile it into a stand-alone package.

The dissertation is partially supported by the National Science Foundation under

grants # DMS-0311969 and # DMS-0211412 for which we are thankful. I would like

to thank Mr. Joel Derouen for writing the first version of the numerical solver for the

general size-structured population model. Without his work, this package will never

become into existence so soon. I would also like to thank Professor N. Pal for extensive

discussions concerning statistical aspects of Chapter2.



Chapter 1

A Quasilinear Hierarchical Size
Structured Model: Well-Posedness
and Approximation

In this chapter, a finite difference approximation to a hierarchical size-structured model

with nonlinear growth, mortality and reproduction rates is developed. Existence-uniqueness

of the weak solution to the model is established and convergence of the finite difference

approximation is proved. Simulations indicate that the monotonicity assumption on the

growth rate is crucial for the global existence of weak solutions. Numerical results testing

the efficiency of this method in approximating the long-time behavior of the model are

presented.

1.1 Introduction

In this chapter, we consider the following initial-boundary value problem which models

the evolution of a hierarchical size-structured population:

ut + (g(x,Q(x, t))u)x + m(x,Q(x, t))u = 0, (x, t) ∈ (0, L] × (0, T ]

g(0, Q(0, t))u(0, t) = C(t) +

∫ L

0

β(x,Q(x, t))u(x, t)dx, t ∈ (0, T ]

u(x, 0) = u0(x), x ∈ [0, L].

(1.1.1)
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Here u(x, t) is the density of individuals having size x at time t, and

Q(x, t) = α

∫ x

0

w(ξ)u(ξ, t)dξ +

∫ L

x

w(ξ)u(ξ, t)dξ, 0 ≤ α < 1,

is a function of the density u referred to hereafter as the environment. The coefficient α is

related to the degree of hierarchy in the population. More precisely, α is the weight of the

lower ranks in the competition for resources. The function w represents the population

measure being used. For example, w(x) = 1 means the total number of individuals in the

population while w(x) = x means the total biomass. The function g denotes the growth

rate of an individual and m denotes the mortality rate of an individual. The function β

is the reproduction rate of an individual, while C represents the inflow rate of zero-size

individual from an external source. It is worth noting that g, m and β are functions of

both the size and the environment.

Hierarchically structured population models have been studied by several researchers

during the past decade (e.g., [3, 4, 6, 7, 8, 9]). Below, we briefly discuss the models

that are most related to (1.1.1). In [4] the model (1.1.1) was considered under the

assumption that the vital rates depend only on the environment Q(x, t), i.e., g = g(Q),

β = β(Q), m = m(Q) and C = 0. Therein, the authors transform the nonlocal PDE

into a local one by means of variable change similar to that used in the age-dependent

case [6]. Moreover, a decoupled ordinary differential equation is obtained for the total

population. The existence and uniqueness of solutions for the transformed problem are

proved, and hence an existence-uniqueness result for the original problem is established

(under a compatibility condition on the initial data u0). However, their method does not

apply to the more general setting presented in (1.1.1).

In [3] the model (1.1.1) was studied with parameters g, β dependent linearly on the

size x, m independent of x, and C(t) = 0 as well. The existence-uniqueness of solutions to

the model is proved using an equivalent pair of partial and ordinary differential equations,
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where the ODE describes the dynamics of the total biomass.

In [9] problem (1.1.1) was investigated with α = 0. Such a problem is used to model

competition for light in a forest, whose distinct feature is its hierarchical nature (see,

e.g., [11]). This means that taller trees are overshadowing the smaller ones, but not

vice versa. The analysis therein uses a coordinate transform which brings the model

into a simple form reducing the first order partial differential equation to a family of

coupled ordinary differential equations for population density and size as functions of

characteristic variables. An existence-uniqueness result for the coupled ODE is obtained,

from which the existence-uniqueness of continuous solutions for the original problem

follows (under a compatibility condition on the initial data).

In this chapter, we are also concerned with the existence-uniqueness of solutions to

(1.1.1). A framework similar to the one in [1, 2, 5, 10] is used to obtain existence-

uniqueness of weak solutions as well as convergence of the difference approximation.

There are two main differences between the model (1.1.1) and classical scalar conservation

laws such as those considered in [5, 10]. 1) A scalar conservation law is considered

on R while (1.1.1) is considered on a compact interval [0, L] with a nonlinear nonlocal

boundary condition. 2) The flux in a conservation law is a local nonlinearity versus a

nonlocal nonlinearity in model (1.1.1). Problem (1.1.1) is also different from the case

where α = 1 considered in [1, 2]. For this special case of α the environment Q =

Q(t) =
∫ L

0
w(ξ)u(ξ, t)dξ is only a function of time. These differences result in different

dynamics. In particular, it is well known that without any monotonicity assumption on

the flux term in a conservation law or in the model (1.1.1) with α = 1, a unique bounded

solution exists under some regularity assumptions on the parameters. However, this is

not the case for the hierarchical structured model (1.1.1) with 0 ≤ α < 1. As is shown

in Section 1.3, solution to this model may blow up in finite time if g is not monotone.

Therefore, in Section 1.2, we develop new techniques to handle these differences and

obtain the necessary apriori estimates.
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By a weak solution to problem (1.1.1) we mean a bounded and measurable function

u(x, t) satisfying

∫ L

0

u(x, t)ϕ(x, t)dx −
∫ L

0

u0(x)ϕ(x, 0)dx

=

∫ t

0

∫ L

0

(uϕs + guϕx − muϕ)dx ds

+

∫ t

0

ϕ(0, s)

(
C(s) +

∫ L

0

β(x,Q(x, s))u(x, s)dx

)
ds

(1.1.2)

for t ∈ [0, T ], and every test function ϕ ∈ C1((0, L) × (0, T )). We note that this is the

first result on convergence of approximation for a hierarchical size-structured model with

nonlinear growth, reproduction and mortality rates. From our point of view, this is what

gives our approach to establishing existence-uniqueness an advantage over the above-

mentioned ones, since it results in a numerical scheme which can be used for studying

the long-time behavior of the model (see Section 3 for an example). Furthermore, as

is seen below, our approach does not require any (biologically irrelevant) compatibility

condition on the initial data u0.

The following regularity conditions will be imposed on our model parameters through-

out this chapter:

(H1) g(x,Q) is twice continuously differentiable with respect to x and Q, g(x,Q) > 0 for

x ∈ [0, L) and g(L,Q) = 0, gQ(x,Q) ≤ 0.

(H2) m(x,Q) is nonnegative continuously differentiable with respect to x and Q.

(H3) β(x,Q) is nonnegative continuously differentiable with respect to x and Q. Fur-

thermore, there is a constant ω1 > 0 such that sup(x,Q)∈[0,L]×[0,∞) β(x,Q) ≤ ω1.

(H4) w(x) is nonnegative continuously differentiable.

(H5) C(t) is nonnegative continuously differentiable.

(H6) u0 ∈ BV [0, L] and u0(x) ≥ 0.
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Smoothness assumptions of similar type with respect to the environment Q have been

used in other hierarchical size-structured models (see [4]). Such smoothness in Q seems

not to cause any significant restrictions in the intended applications. For the convenience

of exposition, we require the same smoothness with respect to x, although such smooth-

ness in x can be relaxed. For example, some applications assume that the birth rate β

is a piecewise continuous function in x. This case can be treated by our methodology,

however, additional technicalities will be required.

The remainder of this chapter is organized as follows. In Section 1.2, we develop

a numerical scheme for computing the solution of (1.1.1) and prove the convergence of

this scheme to the bounded total variation unique solution. In Section 1.3, we present a

numerical example which shows that the assumption gQ ≤ 0 is necessary for the global

existence of weak solutions. Furthermore, we give another example which demonstrates

how well our scheme performs in approximating the long-time behavior of solutions to

the model (1.1.1).

1.2 Existence-Uniqueness and Convergence of approx-

imation

In this section we establish the existence and uniqueness of weak solutions to (1.1.1).

This will be done through the following series of steps: 1) We construct a finite difference

approximation for the model (1.1.1). 2) We establish apriori bounds for the solutions

to the difference approximation (Lemmas 1.2.1, 1.2.2, 1.2.6 and 1.2.7). 3) These apriori

bounds are then used to show that a set of functions generated from the difference

approximation is compact in L1((0, L) × (0, T )) topology, and hence we are able to pass

to the limit along a subsequence. This shows the existence of a weak solution. 4)

Finally, we prove uniqueness of the weak solution, and hence establish convergence of the

difference approximation.
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The following notation will be used throughout the paper: 4x = L/n and 4t = T/l

denote the spatial and time mesh sizes, respectively. The mesh points are given by:

xj = j4x, j = 0, 1, . . . , n and tk = k4t, k = 0, 1, . . . , l. We denote by uk
j and Qk

j the

finite difference approximations of u(xj, tk) and Q(xj, tk), respectively, and we let

gk
j = g(xj, Q

k
j ), βk

j = β(xj, Q
k
j ), mk

j = m(xj, Q
k
j ), wj = w(xj), Ck = C(tk).

We define the difference operator

D−
∆x(u

k
j ) =

uk
j − uk

j−1

4x
, 1 ≤ j ≤ n

and let the `1 and `∞ norms of uk by

‖uk‖1 =
n∑

j=1

|uk
j |4x, ‖uk‖∞ = max

j
|uk

j |,

respectively. Since g is a positive function, we discretize the partial differential equation

in (1.1.1) using the following upwind implicit finite difference approximation:

uk+1
j − uk

j

4t
+

gk
j u

k+1
j − gk

j−1u
k+1
j−1

4x
+ mk

j u
k+1
j = 0, 1 ≤ j ≤ n,

gk
0u

k+1
0 = Ck +

n∑

j=1

βk
j uk

j4x,

Qk
j = α

j∑

i=1

wiu
k
i ∆x +

n∑

i=j+1

wiu
k
i ∆x,

(1.2.1)

with the initial condition

u0
j =

1

4x

∫ j4x

(j−1)4x

u0(x)dx j = 1, 2, . . . , n.

If we define

dk
j = 1 +

4t

4x
gk

j + 4tmk
j j = 1, 2, . . . , n,
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then (1.2.1) can be equivalently written as the following system of linear equations for

~uk+1 = [uk+1
0 , uk+1

1 , . . . , uk+1
n ]T ∈ R

n+1

Ak~uk+1 = ~fk, (1.2.2)

where ~fk = [Ck+
n∑

j=1

βk
j uk

j4x, uk
1, . . . , u

k
n]T and Ak is the following lower triangular matrix

Ak =




gk
0 0 0 · · · 0 0

−4t

4x
gk
0 dk

1 0 · · · 0 0

0 −4t

4x
gk
1 dk

2 · · · 0 0

· · · · · · · · · · · · · · · · · ·

0 0 0 · · · −4t

4x
gk

n−1 dk
n




.

We develop the above implicit scheme because for any choice of 4t and 4x, one can

easily see that under the assumptions on our parameters, the system (1.2.2) has a unique

solution satisfying ~uk+1 ≥ 0, k = 0, 1, . . . , l−1. From a biological point of view, it is very

important that the numerical approximation preserves the nonnegativity of the solution.

Next we state that the difference approximation is bounded in `1 norm. The proof of

this result is similar to that of Lemma 1 in [1], and hence is omitted.

Lemma 1.2.1. The following estimate holds:

‖uk‖1 ≤ (1 + ω14t)k‖u0‖1 +
k∑

i=1

(1 + ω14t)k−iCi−14t,

and thus

Qk
j ≤ Qmax = ‖w‖∞ sup

n,l

[
(1 + ω14t)l‖u0‖1 +

l∑

i=1

(1 + ω14t)l−iCi−14t

]
< ∞.
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Remark 1.2.1. Since g is twice continuously differentiable with respect to x and Q, and

m is continuously differentiable with respect to x and Q, there exists a positive constant

ω2 such that

max
1≤j≤n

∣∣∣∣∣
g(xj, Q

k
j ) − g(xj−1, Q

k
j )

4x
+ m(xj, Q

k
j )

∣∣∣∣∣ ≤ max
(x,Q)∈D

|gx(x,Q)| + max
(x,Q)∈D

|m(x,Q)| := ω2,

where D = {(x,Q)|(x,Q) ∈ [0, L] × [0, Qmax]}.

We then establish an `∞ bound on the difference approximation. Here gQ ≤ 0 plays

a crucial role for establishing such a bound. Note that by (H1) there exists a positive

constant µ such that µ ≤ g(0, Q) for Q ∈ [0, Qmax].

Lemma 1.2.2. Assume that 4t is chosen to satisfy ω24t < 1. Then we have the

estimate

‖uk‖∞ ≤ max

{
(1 − ω24t)−k‖u0‖∞,

ω1‖uk−1‖1 + Ck−1

µ

}
.

Proof. If uk+1
0 = max

j
uk+1

j , then from the second equation of (1.2.1) we get

gk
0u

k+1
0 = Ck +

n∑

i=1

βk
i uk

i 4x ≤ ω1‖uk‖1 + Ck.

Since µ ≤ g(0, Q) for Q ∈ [0, Qmax], we obtain

max
j

uk+1
j = uk+1

0 ≤ ω1‖uk‖1 + Ck

gk
0

≤ ω1‖uk‖1 + Ck

µ
. (1.2.3)

Now, suppose that for some 1 ≤ i ≤ n, uk+1
i = max

j
uk+1

j . Then from the first equation

of (1.2.1), we have

(
1 +

4t

4x
gk

i + 4tmk
i

)
uk+1

i − 4t

4x
gk

i−1u
k+1
i−1 = uk

i .
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Since uk+1
i−1 ≤ uk+1

i , we obtain

(
1 + 4t

gk
i − gk

i−1

4x
+ 4tmk

i

)
uk+1

i ≤ uk
i .

Furthermore, by adding and subtracting alike terms we find that

gk
i − gk

i−1

4x
=

g(xi, Q
k
i ) − g(xi−1, Q

k
i )

4x
+ gQ(xi−1, Q̃)

Qk
i − Qk

i−1

4x
, (1.2.4)

where Q̃ is between Qk
i−1 and Qk

i . Clearly,

Qk
i − Qk

i−1

4x
= α

i∑

j=1

wju
k
j +

n∑

j=i+1

wju
k
j − α

i−1∑

j=1

wju
k
j −

n∑

j=i

wju
k
j = (α − 1)wiu

k
i . (1.2.5)

Hence,

[
1 + 4t

(
mk

i +
g(xi, Q

k
i ) − g(xi−1, Q

k
i )

4x

)
+ 4tgQ(xi−1, Q̃)(α − 1)wiu

k
i

]
uk+1

i ≤ uk
i .

Noticing that gQ ≤ 0 and 0 ≤ α < 1, and using Remark 1.2.1, we obtain

(1 − ω24t)uk+1
i ≤ uk

i .

Since 1 − ω24t > 0, we have

uk+1
i ≤ 1

1 − ω24t
uk

i ≤ 1

1 − ω24t
max

j
uk

j ,

which implies

max
j

uk
j ≤ (1 − ω24t)−k max

j
u0

j . (1.2.6)
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A combination of (1.2.3) and (1.2.6) then yields

‖uk‖∞ ≤ max

{
(1 − ω24t)−k‖u0‖∞,

ω1‖uk−1‖1 + Ck−1

µ

}
.

The next three lemmas are necessary to show that the approximation uk
j has bounded

total variation.

Lemma 1.2.3. Assume that 4t is chosen to satisfy ω24t < 1. Then there exists a

positive constant E1 such that for each k

max
i

∣∣∣∣
Qk

i − Qk−1
i

4t

∣∣∣∣ ≤ E1. (1.2.7)

Proof. From the third equation of (1.2.1), we find

Qk
i − Qk−1

i

4t
= α

i∑

j=1

wj

uk
j − uk−1

j

4t
4x +

n∑

j=i+1

wj

uk
j − uk−1

j

4t
∆x

= −
[
α

i∑

j=1

wjm
k−1
j uk

j +
n∑

j=i+1

wjm
k−1
j uk

j

]
4x

−
[
α

i∑

j=1

wjD
−
∆x(g

k−1
j uk

j ) +
n∑

j=i+1

wjD
−
∆x(g

k−1
j uk

j )

]
4x.

Moreover,

−
[
α

i∑

j=1

wjD
−
∆x(g

k−1
j uk

j ) +
n∑

j=i+1

wjD
−
∆x(g

k−1
j uk

j )

]
4x

= α
i−1∑

j=1

gk−1
j wx(x̄j+1)u

k
j4x +

n−1∑

j=i+1

gk−1
j wx(x̄j+1)u

k
j4x

+αw1g
k−1
0 uk

0 − αwig
k−1
i uk

i + wi+1g
k−1
i uk

i ,
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where x̄j+1 is between xj and xj+1. Hence,

max
i

∣∣∣∣
Qk

i − Qk−1
i

4t

∣∣∣∣ ≤
[

max
(x,Q)∈D

|m(x,Q)| ‖w‖∞ + max
(x,Q)∈D

|g(x,Q)| max
x∈[0,L]

|w′(x)|
]
‖uk‖1

+3 max
(x,Q)∈D

|g(x,Q)| ‖w‖∞‖uk‖∞.

Thus by Lemmas 1.2.1 and 1.2.2, there exists a positive constant E1 such that for each

k max
i

∣∣∣∣
Qk

i − Qk−1
i

4t

∣∣∣∣ ≤ E1.

Lemma 1.2.4. Assume that 4t is chosen to satisfy ω24t < 1. Then there exist a

positive constant E2 such that for each k we have

∣∣∣∣
uk+1

0 − uk
0

4t

∣∣∣∣ ≤ E2. (1.2.8)

Proof. By the fact that

gk
0u

k+1
0 − gk−1

0 uk
0

4t
= gk

0

uk+1
0 − uk

0

4t
+ uk

0

gk
0 − gk−1

0

4t
,

we have from the boundary condition

gk
0

uk+1
0 − uk

0

4t
+ uk

0

gk
0 − gk−1

0

4t
− Ck − Ck−1

4t

=
n∑

i=1

βk
i uk

i − βk−1
i uk−1

i

4t
4x =

n∑

i=1

[
βk

i

uk
i − uk−1

i

4t
+ uk−1

i

βk
i − βk−1

i

4t

]
4x

=
n∑

i=1

{
−βk

i [D−
∆x(g

k−1
i uk

i ) + mk−1
i uk

i ] + uk−1
i βQ(xi, Q

k

i )
Qk

i − Qk−1
i

4t

}
4x,

(1.2.9)
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where Q
k

i is between Qk
i and Qk−1

i . Note that

n∑

i=1

[−βk
i D−

∆x(g
k−1
i uk

i )]4x = βk
1gk−1

0 uk
0 +

n−1∑

j=1

gk−1
j uk

j (β
k
j+1 − βk

j )

= βk
1gk−1

0 uk
0 +

n−1∑

j=1

gk−1
j [βx(x̄j+1, Q

k
j+1) + (α − 1)βQ(xj, Q

k

j+1)wj+1u
k
j+1]u

k
j4x,

where x̄j+1 ∈ (xj, xj+1), and Q
k

j+1 is between Qk
j and Qk

j+1. Substituting the above

equation in (1.2.9) we have

∣∣∣∣g
k
0

uk+1
0 − uk

0

4t
+ uk

0

gk
0 − gk−1

0

4t
− Ck − Ck−1

4t

∣∣∣∣

≤ ω1 max
(x,Q)∈D

|m(x,Q)| ‖uk‖1 + E1 max
(x,Q)∈D

|βQ(x,Q)|‖uk−1‖1 + ω1 max
(x,Q)∈D

g(x,Q)‖uk‖∞

+ max
(x,Q)∈D

g(x,Q)

[
max

(x,Q)∈D

|βx(x,Q)| + (1 − α) max
(x,Q)∈D

|βQ(x,Q)| ‖w‖∞‖uk‖∞
]
‖uk‖1.

Note that

gk
0 − gk−1

0

4t
=

g(0, Qk
0) − g(0, Qk−1

0 )

4t
= gQ(0, Q

k

0)
Qk

0 − Qk−1
0

4t
,

where Q
k

0 is between Qk−1
0 and Qk

0. Hence, by (1.2.7) we have

∣∣∣∣
gk
0 − gk−1

0

4t

∣∣∣∣ ≤ E1 max
(x,Q)∈D

|gQ(x,Q)|.

Thus by (H5), µ ≤ gk
0 , Lemmas 1.2.1 and 1.2.2, we see that there exists a positive constant

E2 such that

∣∣∣∣
uk+1

0 − uk
0

4t

∣∣∣∣ ≤ E2 holds for every k.

Remark 1.2.2. Since g is twice continuously differentiable with respect to x and Q, and

w is continuously differentiable with respect to x, in view of (1.2.4)-(1.2.5) and Remark

1.2.1 there exists a positive constant ω3 such that

max
1≤j≤n

|D−
∆x(g

k
j )| + max

1≤j≤n
|mk

j | ≤ max
(x,Q)∈D

|gx(x,Q)| + max
(x,Q)∈D

|gQ(x,Q)|(1 − α)‖w‖∞‖uk‖∞

+ max
(x,Q)∈D

|m(x,Q)|

≤ ω2 + max
(x,Q)∈D

|gQ(x,Q)|(1 − α)‖w‖∞‖uk‖∞ ≤ ω3.
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Now set ηk
j = D−

∆x(u
k
j ). We have the following result.

Lemma 1.2.5. Assume that 4t is chosen to satisfy ω34t < 1, then there exist positive

constants E3 and E4 such that

n∑
j=2

[
D−

∆x

(
D−

∆x(g
k
j u

k+1
j )

)
+ D−

∆x(m
k
j u

k+1
j )

]
sgn(ηk+1

j )4x

+[D−
∆x(g

k
1u

k+1
1 ) + mk

1u
k+1
1 ]sgn(ηk+1

1 )

≥ −
(
ω3‖ηk+1‖1 + E3‖ηk‖1 + E4

)
.

(1.2.10)

Proof. We first consider the terms
n∑

j=2

D−
∆x

(
D−

∆x(g
k
j u

k+1
j )

)
sgn(ηk+1

j )4x and D−
∆x(g

k
1u

k+1
1 )sgn(ηk+1

1 ).

Straightforward computations give

n∑

j=2

D−
∆x

(
gk

j u
k+1
j − gk

j−1u
k+1
j−1

4x

)
sgn(ηk+1

j )4x

=
n∑

j=2

D−
∆x

(
gk

j − gk
j−1

4x
uk+1

j−1

)
sgn(ηk+1

j )4x +
n∑

j=2

D−
∆x

(
gk

j

uk+1
j − uk+1

j−1

4x

)
sgn(ηk+1

j )4x

and

D−
∆x(g

k
1u

k+1
1 )sgn(ηk+1

1 ) = D−
∆x(g

k
1)u

k+1
0 sgn(ηk+1

1 ) + gk
1 |ηk+1

1 |.

Furthermore,

n∑

j=2

D−
∆x

(
gk

j

uk+1
j − uk+1

j−1

4x

)
sgn(ηk+1

j )4x + gk
1 |ηk+1

1 |

=
n∑

j=2

|ηk+1
j |D−

∆x(g
k
j )4x +

n∑

j=2

gk
j−1

ηk+1
j − ηk+1

j−1

4x
sgn(ηk+1

j )4x + gk
1 |ηk+1

1 |

≥
n∑

j=2

|ηk+1
j |D−

∆x(g
k
j )4x +

n∑

j=2

gk
j−1

(
|ηk+1

j | − |ηk+1
j−1 |

)
+ gk

1 |ηk+1
1 |

=
n∑

j=2

(|ηk+1
j |gk

j − |ηk+1
j−1 |gk

j−1) + gk
1 |ηk+1

1 | = gk
n|ηk+1

n | = 0.
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Hence,

n∑

j=2

D−
∆x

(
D−

∆x(g
k
j u

k+1
j )

)
sgn(ηk+1

j )4x + D−
∆x(g

k
1u

k+1
1 )sgn(ηk+1

1 )

≥
n∑

j=2

D−
∆x

(
gk

j − gk
j−1

4x
uk+1

j−1

)
sgn(ηk+1

j )4x + D−
∆x(g

k
1)u

k+1
0 sgn(ηk+1

1 )

=
n∑

j=2

D−
∆x(D

−
∆x(g

k
j ))uk+1

j−1sgn(ηk+1
j )4x +

n−1∑

j=1

D−
∆x(g

k
j )D−

∆x(u
k+1
j )sgn(ηk+1

j+1 )4x

+D−
∆x(g

k
1)u

k+1
0 sgn(ηk+1

1 )

= I1 + I2 + I3.

Moreover, we find

D−
∆x(D

−
∆x(g

k
j )) =

gx(x̄j, Q
k
j ) − gx(x̄j−1, Q

k
j−1)

4x

+
gQ(xj−1, Q

k

j )(Q
k
j − Qk

j−1) − gQ(xj−2, Q
k

j−1)(Q
k
j−1 − Qk

j−2)

(4x)2
,

where x̄j ∈ (xj−1, xj), x̄j−1 ∈ (xj−2, xj−1), Q
k

j is between Qk
j−1 and Qk

j , and Q
k

j−1 is

between Qk
j−2 and Qk

j−1. Rewriting the right side of the above equation yields

gx(x̄j, Q
k
j ) − gx(x̄j−1, Q

k
j−1)

4x
= gxx(˜̄xj, Q

k
j )

x̄j − x̄j−1

4x
+ gxQ(x̄j−1, Q̃

k
j )(α − 1)wju

k
j ,

and

gQ(xj−1, Q
k

j )(Q
k
j − Qk

j−1) − gQ(xj−2, Q
k

j−1)(Q
k
j−1 − Qk

j−2)

(4x)2

= gQx(x̃j−1, Q
k

j )(α − 1)wju
k
j + gQQ(xj−2, Q̃

k

j )(α − 1)wj−1u
k
j−1

Q
k

j − Q
k

j−1

4x

+gQ(xj−2, Q
k

j )(α − 1)w′(x̂j)u
k
j + gQ(xj−2, Q

k

j )(α − 1)w(xj−1)η
k
j ,

where ˜̄xj ∈ (x̄j−1, x̄j), Q̃k
j is between Qk

j−1 and Qk
j , x̃j−1 ∈ (xj−2, xj−1), x̂j ∈ (xj−1, xj),
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and Q̃
k

j is between Q
k

j−1 and Q
k

j . For simplicity, we may let I1 = J1 + J2, where

J1 =
n∑

j=2

gQ(xj−2, Q
k

j )(α − 1)w(xj−1)u
k+1
j−1η

k
j sgn(ηk+1

j )4x,

and J2 contains the remaining terms in I1.

We then consider the other term
n∑

j=2

D−
∆x(m

k
j u

k+1
j )sgn(ηk+1

j )4x. Simple calculations

yield

n∑

j=2

D−
∆x(m

k
j u

k+1
j )sgn(ηk+1

j )4x

=
n∑

j=2

D−
∆x(m

k
j )u

k+1
j−1sgn(ηk+1

j )4x +
n∑

j=2

mk
j D

−
∆x(u

k+1
j )sgn(ηk+1

j )4x

=
n∑

j=2

[
mx(x̃j, Q

k
j ) + mQ(xj, Q̃

k
j )(α − 1)wju

k
j

]
uk+1

j−1sgn(ηk+1
j )4x +

n∑

j=2

mk
j |ηk+1

j |4x

= I4 + I5,

where x̃j ∈ (xj−1, xj) and Q̃k
j is between Qk

j−1 and Qk
j .

By Remark 1.2.2, I2 + I5 ≥ −ω3‖ηk+1‖1. Then by Lemmas 1.2.1 and 1.2.2, there

exists a positive constant E3 such that J1 ≥ −E3‖ηk‖1. Furthermore, noticing the fact

that ∣∣∣∣∣
Q

k

j − Q
k

j−1

4x

∣∣∣∣∣ ≤
∣∣∣∣∣
Qk

j − Qk
j−1

4x

∣∣∣∣∣ +

∣∣∣∣∣
Qk

j−1 − Qk
j−2

4x

∣∣∣∣∣ ≤ 2(1 − α)‖w‖∞‖uk‖∞,

we see that there is another positive constant E4 such that

J2 + I3 + I4 + m1u
k+1
1 sgn(ηk+1

1 ) ≥ −E4.

Thus we obtain (1.2.10).

With the above lemmas, we now can show that the approximation uk
j has bounded

total variation. This bound plays an important role in establishing the subsequential

convergence of the difference approximation (1.2.1) to a weak solution of (1.1.1).
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Lemma 1.2.6. Assume that 4t is chosen to satisfy ω34t < 1. Then there exists a

positive constant E5 such that ‖D−
∆x(u

k)‖1 ≤ E5.

Proof. Apply the operator D−
∆x to the first equation of (1.2.1) to get

ηk+1
j − ηk

j

4t
+ D−

∆x

(
gk

j u
k+1
j − gk

j−1u
k+1
j−1

4x

)
+ D−

∆x(m
k
j u

k+1
j ) = 0, 2 ≤ j ≤ n. (1.2.11)

If j = 1, the first equation of (1.2.1) takes the form

uk+1
1 − uk

1

4t
+

gk
1u

k+1
1 − gk

0u
k+1
0

4x
+ mk

1u
k+1
1 = 0.

On the other hand,

ηk+1
1 − ηk

1

4t
=

1

4t

(
uk+1

1 − uk+1
0

4x
− uk

1 − uk
0

4x

)
=

1

4x

(
uk+1

1 − uk
1

4t
− uk+1

0 − uk
0

4t

)
.

Hence,

ηk+1
1 − ηk

1

4t
= − 1

4x

(
uk+1

0 − uk
0

4t
+ D−

∆x(g
k
1u

k+1
1 ) + mk

1u
k+1
1

)
. (1.2.12)

Multiplying (1.2.11) by sgn(ηk+1
j )4x and noticing that −ηk

j sgn(ηk+1
j ) ≥ −|ηk

j |, we have

|ηk+1
j | − |ηk

j |
4t

4x +

[
D−

∆x

(
gk

j u
k+1
j − gk

j−1u
k+1
j−1

4x

)
+ D−

∆x(m
k
j u

k+1
j )

]
sgn(ηk+1

j )4x ≤ 0

for 2 ≤ j ≤ n. Similarly, multiplying (1.2.12) by sgn(ηk+1
1 )4x, we have

|ηk+1
1 | − |ηk

1 |
4t

4x +

[
uk+1

0 − uk
0

4t
+ D−

∆x(g
k
1u

k+1
1 ) + mk

1u
k+1
1

]
sgn(ηk+1

1 ) ≤ 0.
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Summing over the indices j = 1, 2, . . . , n, we obtain

‖ηk+1‖1−‖ηk‖1

4t
+

∑n

j=2

[
D−

∆x

(
D−

∆x(g
k
j u

k+1
j )

)
+ D−

∆x(m
k
j u

k+1
j )

]
sgn(ηk+1

j )4x

+[D−
∆x(g

k
1u

k+1
1 ) + mk

1u
k+1
1 ]sgn(ηk+1

1 ) −
∣∣∣uk+1

0 −uk
0

4t

∣∣∣ ≤ 0.

Then by Lemmas 1.2.4 and 1.2.5, we have

‖ηk+1‖1 − ‖ηk‖1

4t
≤ ω3‖ηk+1‖1 + E3‖ηk‖1 + E2 + E4.

The above inequality leads to the desired result.

The next result shows that the difference approximation satisfies a Lipschitz-type

condition in t.

Lemma 1.2.7. Assume that 4t is chosen to satisfy ω34t < 1. Then there exists a

positive constant E6 such that for any q > p, we have

n∑

j=1

∣∣∣∣
uq

j − up
j

4t

∣∣∣∣4x ≤ E6(q − p).

Proof. Using the first equation of (1.2.1), we obtain

n∑

j=1

∣∣∣∣∣
uk+1

j − uk
j

4t
4x

∣∣∣∣∣ =
n∑

j=1

∣∣∣∣∣

(
gk

j u
k+1
j − gk

j−1u
k+1
j−1

4x
+ mk

j u
k+1
j

)
4x

∣∣∣∣∣

=
n∑

j=1

∣∣∣∣∣

[ (
gk

j − gk
j−1

4x
+ mk

j

)
uk+1

j + gk
j−1

uk+1
j − uk+1

j−1

4x

]
4x

∣∣∣∣∣ .

Hence, there exists a positive constant E6 such that

n∑

j=1

∣∣∣∣∣
uk+1

j − uk
j

4t

∣∣∣∣∣4x ≤
n∑

j=1

∣∣D−
∆x(g

k
j ) + mk

j

∣∣ uk+1
j 4x +

n∑

j=1

gk
j−1|ηk+1

j |4x

≤ ω3‖uk+1‖1 + max
(x,Q)∈D

g(x,Q)‖ηk+1‖1 ≤ E6.
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Thus,
n∑

j=1

∣∣∣∣
uq

j − up
j

4t

∣∣∣∣ ∆x ≤
q∑

k=p

n∑

j=1

∣∣∣∣∣
uk+1

j − uk
j

4t

∣∣∣∣∣4x ≤ E6(q − p).

Following [10] we define a family of functions {U4x,4t} by

U4x,4t(x, t) = uk
j

for x ∈ [xj−1, xj), t ∈ [tk−1, tk), j = 1, . . . , n and k = 1, . . . , l. Then, by Lemmas

1.2.1, 1.2.2, 1.2.6 and 1.2.7, the set of functions {U4x,4t} is compact in the topology of

L1((0, L)× (0, T )), and hence following the proof of Lemma 16.7 (p.276) in [10] we have

the following lemma.

Lemma 1.2.8. There exists a sequence {U4xi,4ti} ⊂ {U4x,4t} which converges to a

BV ([0, L] × [0, T ]) function u(x, t) in the sense that for all t > 0

∫ L

0

|U4xi,4ti − u(x, t)|dx → 0

and ∫ T

0

∫ L

0

|U4xi,4ti − u(x, t)|dx dt → 0

as i → ∞. Furthermore, there exists a positive constant E7 (dependent on ‖u0‖BV [0,L]

and ‖C‖C1[0,T ]) such that the function u satisfies

‖u‖BV ([0,L]×[0,T ]) ≤ E7.

The next theorem shows that the limit function u(x, t) constructed via our difference

scheme is a weak solution of problem (1.1.1).
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Theorem 1.2.9. The limit function u(x, t) defined in Lemma 1.2.8 is a weak solution

of (1.1.1) and satisfies

Q(x, t) ≤ ‖w‖∞‖u(·, t)‖1 ≤ ‖w‖∞
(

eω1T‖u0‖1 +

∫ T

0

eω1(T−s)C(s)ds

)

and

‖u‖L∞((0,L)×(0,T )) ≤ max

{
eω2T‖u0‖∞,

‖C‖C[0,T ] + ω1‖u‖L∞((0,T );L1(0,L))

µ

}
,

where µ ≤ g(0, Q) for Q ∈ [0, Qmax].

Proof. Let ϕ ∈ C1((0, L)×(0, T )) and denote the finite difference approximations ϕ(xj, tk)

by ϕk
j . Multiplying the difference scheme by ϕk+1

j , we get

uk+1
j ϕk+1

j − uk
j ϕ

k
j

∆t
− uk

j

ϕk+1
j − ϕk

j

∆t
+

gk
j u

k+1
j ϕk+1

j − gk
j−1u

k+1
j−1ϕ

k+1
j−1

∆x

−gk
j−1u

k+1
j−1

ϕk+1
j − ϕk+1

j−1

∆x
+ mk

j u
k+1
j ϕk+1

j = 0.

Multiplying the above equation by ∆x∆t, and summing over k = 0, 1, 2, . . . , i − 1 and

j = 1, 2, . . . , n, we obtain

n∑

j=1

(ui
jϕ

i
j − u0

jϕ
0
j)∆x

=
i−1∑

k=0

n∑

j=1

(
uk

j

ϕk+1
j − ϕk

j

∆t
+ gk

j−1u
k+1
j−1

ϕk+1
j − ϕk+1

j−1

∆x
− mk

j u
k+1
j ϕk+1

j

)
∆x∆t

+
i−1∑

k=0

ϕk+1
0

(
Ck +

n∑

j=1

βk
j uk

j4x

)
∆t.

Passing to the limit, we find that u(x, t) satisfies the weak solution condition. Taking

the limit in the bounds obtained in Lemmas 1.2.1 and 1.2.2, we get the above bounds on

Q(x, t) and ‖u‖L∞((0,L)×(0,T )), respectively.
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The following theorem guarantees the continuous dependence of the solution {uk
j} of

(1.2.1) with respect to the initial condition u0.

Theorem 1.2.10. Let {uk
j} and {ûk

j} be the solutions of our scheme (1.2.1) correspond-

ing to the initial conditions u0
j and û0

j and the boundary conditions Ck and Ĉk, respec-

tively. Then, there exists a positive constant δ such that

‖uk+1 − ûk+1‖1 ≤ (1 + δ4t)‖uk − ûk‖1 + 4t|Ck − Ĉk|. (1.2.13)

Proof. Since {uk
j} and {ûk

j} satisfy

uk+1
j − uk

j

4t
+ D−

∆x(g
k
j u

k+1
j ) + mk

j u
k+1
j = 0, gk

0u
k+1
0 = Ck +

n∑

j=1

βk
j uk

j4x,

ûk+1
j − ûk

j

4t
+ D−

∆x(ĝ
k
j û

k+1
j ) + m̂k

j û
k+1
j = 0, ĝk

0 û
k+1
0 = Ĉk +

n∑

j=1

β̂k
j ûk

j4x,

respectively (here ĝk
j = g(xj, Q̂

k
j ), and similar notation is used for m̂k

j and β̂k
j ), letting

vk
j = uk

j − ûk
j , we get

vk+1
j − vk

j

4t
+ D−

∆x(g
k
j u

k+1
j − ĝk

j û
k+1
j ) + mk

j u
k+1
j − m̂k

j û
k+1
j = 0, 1 ≤ j ≤ n (1.2.14)

gk
0u

k+1
0 − ĝk

0 û
k+1
0 = (Ck − Ĉk) +

n∑

j=1

βk
j uk

j4x −
n∑

j=1

β̂k
j ûk

j4x. (1.2.15)

Multiplying (1.2.14) by sgn(vk+1
j )4x, noticing −vk

j sgn(vk+1
j ) ≥ −|vk

j | and summing over

j = 1, 2, . . . , n, we find

‖vk+1‖1 − ‖vk‖1

4t
≤ −

n∑

j=1

[
D−

∆x(g
k
j u

k+1
j − ĝk

j û
k+1
j ) + mk

j u
k+1
j − m̂k

j û
k+1
j

]
sgn(vk+1

j )4x.

(1.2.16)
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Note that

n∑

j=1

D−
∆x(g

k
j v

k+1
j )sgn(vk+1

j )4x =
n∑

j=1

[
vk+1

j D−
∆x(g

k
j ) + gk

j−1D
−
∆x(v

k+1
j )

]
sgn(vk+1

j )4x

≥
n∑

j=1

|vk+1
j |(gk

j − gk
j−1) +

n∑

j=1

gk
j−1

(
|vk+1

j | − |vk+1
j−1 |

)

= |vk+1
n |gk

n − |vk+1
0 |gk

0 = −|vk+1
0 |gk

0 .

Hence,

n∑
j=1

D−
∆x(g

k
j u

k+1
j − ĝk

j û
k+1
j )sgn(vk+1

j )4x

=
n∑

j=1

D−
∆x(g

k
j v

k+1
j )sgn(vk+1

j )4x +
n∑

j=1

D−
∆x

((
gk

j − ĝk
j

)
ûk+1

j

)
sgn(vk+1

j )4x

≥
n∑

j=1

D−
∆x

((
gk

j − ĝk
j

)
ûk+1

j

)
sgn(vk+1

j )4x − |vk+1
0 |gk

0 .

(1.2.17)

Furthermore, we have

n∑

j=1

(
mk

j u
k+1
j − m̂k

j û
k+1
j

)
sgn(vk+1

j )4x

=
n∑

j=1

mk
j |vk+1

j |4x +
n∑

j=1

(
mk

j − m̂k
j

)
ûk+1

j sgn(vk+1
j )4x

≥
n∑

j=1

(
mk

j − m̂k
j

)
ûk+1

j sgn(vk+1
j )4x.

(1.2.18)

By (1.2.16)-(1.2.18), we obtain

‖vk+1‖1 − ‖vk‖1

4t
≤ −

n∑

j=1

D−
∆x

((
gk

j − ĝk
j

)
ûk+1

j

)
sgn(vk+1

j )4x

−
n∑

j=1

(
mk

j − m̂k
j

)
ûk+1

j sgn(vk+1
j )4x + |vk+1

0 |gk
0 .

(1.2.19)
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On the other hand, upon manipulation we have

D−
∆x(g

k
j − ĝk

j )∆x

= [g(xj, Q
k
j ) − g(xj−1, Q

k
j−1)] − [g(xj, Q̂

k
j ) − g(xj−1, Q̂

k
j−1)]

=

[∫ 1

0

gx(rxj + (1 − r)xj−1, rQ
k
j + (1 − r)Qk

j−1)dr 4x

−
∫ 1

0

gx(rxj + (1 − r)xj−1, rQ̂
k
j + (1 − r)Q̂k

j−1)dr 4x

]

+

[∫ 1

0

gQ(rxj + (1 − r)xj−1, rQ
k
j + (1 − r)Qk

j−1)dr (Qk
j − Qk

j−1)

−
∫ 1

0

gQ(rxj + (1 − r)xj−1, rQ̂
k
j + (1 − r)Q̂k

j−1)dr (Q̂k
j − Q̂k

j−1)

]

=

∫ 1

0

gxQ(x̄j, Qj)
[
r(Qk

j − Q̂k
j ) + (1 − r)(Qk

j−1 − Q̂k
j−1)

]
dr 4x

+

∫ 1

0

gQQ(x̄j, Q̃j)
[
r(Qk

j − Q̂k
j ) + (1 − r)(Qk

j−1 − Q̂k
j−1)

]
dr (α − 1)wju

k
j4x

+

∫ 1

0

gQ(x̄j, rQ̂
k
j + (1 − r)Q̂k

j−1)dr (α − 1)wjv
k
j4x,

where x̄j = rxj + (1 − r)xj−1, Qj and Q̃j are both between rQk
j + (1 − r)Qk

j−1 and

rQ̂k
j + (1 − r)Q̂k

j−1. Clearly,

n∑

j=1

D−
∆x

((
gk

j − ĝk
j

)
ûk+1

j

)
sgn(vk+1

j )4x

=
n∑

j=1

ûk+1
j−1D

−
∆x

(
gk

j − ĝk
j

)
sgn(vk+1

j )4x

+
n∑

j=1

gQ(xj, Q)
(
Qk

j − Q̂k
j

)
D−

∆x

(
ûk+1

j

)
sgn(vk+1

j )4x,
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where Q is between Qk
j and Q̂k

j . Hence, there exist positive constants c1 and c2 such that

−
n∑

j=1

D−
∆x

((
gk

j − ĝk
j

)
ûk+1

j

)
sgn(vk+1

j )4x

≤
n∑

j=1

ûk+1
j−1 |D−

∆x

(
gk

j − ĝk
j

)
|4x + max

(x,Q)∈D
|gQ(x,Q)|max

j
|Qk

j − Q̂k
j | ‖D−

∆x(û
k+1)‖1

≤ (1 − α)‖w‖∞‖ûk+1‖∞ max
(x,Q)∈D

|gQ(x,Q)| ‖vk‖1

+‖ûk+1‖1 max
(x,Q)∈D

|gxQ(x,Q)| max
j

|Qk
j − Q̂k

j |

+(1 − α)‖w‖∞‖uk‖∞‖ûk+1‖1 max
(x,Q)∈D

|gQQ(x,Q)| max
j

|Qk
j − Q̂k

j |

+ max
(x,Q)∈D

|gQ(x,Q)|‖D−
∆x(û

k+1)‖1 max
j

|Qk
j − Q̂k

j |

≤ c1‖vk‖1 + c2 max
j

|Qk
j − Q̂k

j |,
(1.2.20)

where D =
{

(x,Q) | (x,Q) ∈ [0, L] × [0, Qmax], with Qmax = max{Qmax, Q̂max}
}

. Fur-

thermore, by (1.2.15) we have

gk
0v

k+1
0 +

(
gk
0 − ĝk

0

)
ûk+1

0 = (Ck − Ĉk) +
n∑

j=1

βk
j vk

j4x +
n∑

j=1

(
βk

j − β̂k
j

)
ûk

j4x,

that is,

gk
0v

k+1
0 = −gQ(0, Q0)

(
Qk

0 − Q̂k
0

)
ûk+1

0 +
n∑

j=1

βk
j vk

j4x

+
n∑

j=1

βQ(xj, Qj)
(
Qk

j − Q̂k
j

)
ûk

j4x + (Ck − Ĉk),

where Qj is between Qk
j and Q̂k

j , j = 0, 1, . . . , n. Hence, there exists a positive constant



24

c3 such that

gk
0 |vk+1

0 | ≤ max
(x,Q)∈D

|gQ(x,Q)|max
j

|Qk
j − Q̂k

j | ‖ûk+1‖∞ + ω1‖vk‖1

+ max
(x,Q)∈D

|βQ(x,Q)|max
j

|Qk
j − Q̂k

j | ‖ûk‖1 + |Ck − Ĉk|

≤ ω1‖vk‖1 + c3 max
j

|Qk
j − Q̂k

j | + |Ck − Ĉk|.

(1.2.21)

On the other hand, we have

n∑

j=1

(
mk

j − m̂k
j

)
ûk+1

j sgn(vk+1
j )4x =

n∑

j=1

mQ(xj, Qj)
(
Qk

j − Q̂k
j

)
ûk+1

j sgn(vk+1
j )4x,

where Qj is between Qk
j and Q̂k

j . Hence, there exists a positive constant c4 such that

−
n∑

j=1

(
mk

j − m̂k
j

)
ûk+1

j sgn(vk+1
j )4x

≤ max
(x,Q)∈D

|mQ(x,Q)| max
j

|Qk
j − Q̂k

j | ‖ûk+1‖1 ≤ c4 max
j

|Qk
j − Q̂k

j |.
(1.2.22)

Thus, by (1.2.19)-(1.2.22) we find

‖vk+1‖1 − ‖vk‖1

4t
≤ (c1 + ω1)‖vk‖1 + |Ck − Ĉk| + (c2 + c3 + c4) max

j
|Qk

j − Q̂k
j |

≤ [(c1 + ω1) + (c2 + c3 + c4)‖w‖∞]‖vk‖1 + |Ck − Ĉk|,

since 0 ≤ α < 1 and

Qk
j − Q̂k

j = α

j∑

i=1

wiv
k
i 4x +

n∑

i=j+1

wiv
k
i 4x.

Choose a constant δ ≥ (c1 + ω1) + (c2 + c3 + c4)‖w‖∞. We then have

‖vk+1‖1 − ‖vk‖1

4t
≤ δ‖vk‖1 + |Ck − Ĉk|,
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which yields (1.2.13).

Next, we prove that the BV solution defined in Lemma 1.2.8 and Theorem 1.2.9 is

unique.

Theorem 1.2.11. Suppose that u and û are bounded variation weak solutions of problem

(1.1.1) corresponding to the initial conditions u0 and û0 and the boundary conditions C

and Ĉ, respectively, then there exist positive constants λ and γ such that

‖u(·, t) − û(·, t)‖1 ≤ λeγt
(
‖u(·, 0) − û(·, 0)‖1 + ‖C − Ĉ‖L1(0,T )

)
.

Proof. Assume that Q and B are given Lipschitz continuous functions and consider the

following initial-boundary value problem:

ut + (g(x,Q(x, t))u)x + m(x,Q(x, t))u = 0, (x, t) ∈ (0, L] × (0, T ]

g(0, Q(0, t))u(0, t) = B(t), t ∈ (0, T ]

u(x, 0) = u0(x), x ∈ [0, L].

(1.2.23)

Since (1.2.23) is a linear problem with a local boundary condition, it has a unique weak

solution. In fact, a weak solution can be defined as a limit of the finite difference approx-

imation with the given numbers Qk
j = Q(xj, tk) and Bk = B(tk), and the uniqueness can

be established by using a similar technique as in ([10], p. 282). In addition, from the

proof of Theorem 1.2.10, we can see that if {uk
j} and {ûk

j} are solutions of the difference

scheme corresponding to given functions (Qk
j , B

k) and (Q̂k
j , B̂

k), respectively, we have

‖vk+1‖1 − ‖vk‖1

4t
≤ c1‖vk‖1 + (c2 + c3 + c4) max

j
|Qk

j − Q̂k
j | + |Bk − B̂k|.

Let ρ = c2 + c3 + c4, then we have

‖vk+1‖1 ≤ (1 + c14t)‖vk‖1 + ρ4t max
j

|Qk
j − Q̂k

j | + |Bk − B̂k|4t.
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Equivalently,

‖vk‖1 ≤ (1 + c14t)k‖v0‖1 +
k−1∑

i=0

(1 + c14t)i
[
|Bk−1−i − B̂k−1−i|4t

+ ρ4t max
j

|Qk−1−i
j − Q̂k−1−i

j |
]

.

Hence,

‖vk‖1 ≤ (1 + c14t)k

[
‖v0‖1 +

k−1∑

i=0

(
ρ4t max

j
|Qi

j − Q̂i
j| + |Bi − B̂i|4t

)]
. (1.2.24)

From Theorem 1.2.9, we know that {U4x,4t} and {Û4x,4t} converge to u(x, t) and û(x, t)

strongly in C([0, T ];L1(0, L)), respectively, where u(x, t) and û(x, t) are the unique solu-

tions of (1.2.23) with the given functions (Q(x, t), B(t)) and (Q̂(x, t), B̂(t)), respectively.

Letting v(t) = u(·, t) − û(·, t) and taking the limit of (1.2.24), we obtain

‖v(t)‖1 ≤ ec1T

[
‖v(0)‖1 +

∫ t

0

(
ρ sup

x∈[0,L]

|Q(x, s) − Q̂(x, s)| + |B(s) − B̂(s)|
)

ds

]
.

(1.2.25)

By virtue of Lemma 1.2.8, the corresponding solutions of (1.2.23) satisfy

Q(x, t) = α

∫ x

0

w(ξ)u(ξ, t)dξ +

∫ L

x

w(ξ)u(ξ, t)dξ,

B(t) = C(t) +

∫ L

0

β(x,Q(x, t))u(x, t)dx,

Q̂(x, t) = α

∫ x

0

w(ξ)û(ξ, t)dξ +

∫ L

x

w(ξ)û(ξ, t)dξ,

B̂(t) = Ĉ(t) +

∫ L

0

β(x, Q̂(x, t))û(x, t)dx.

Thus, we get

sup
x∈[0,L]

|Q(x, s) − Q̂(x, s)| ≤
∫ L

0

w(ξ)|u(ξ, s) − û(ξ, s)|dξ ≤ ‖w‖∞‖v(s)‖1
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and

|B(s) − B̂(s)|

≤ |C(s) − Ĉ(s)| +
∫ L

0

β(x,Q)|u(x, s) − û(x, s)|dx +

∫ L

0

|βQ(x, Q̃)| |Q − Q̂|û(x, s)dx

≤ |C(s) − Ĉ(s)| + ω1‖v(s)‖1 + L‖w‖∞ max
(x,Q)∈D

|βQ(x,Q)| ‖û‖L∞((0,L)×(0,T ))‖v(s)‖1.

Hence,

∫ t

0

(
ρ sup

x∈[0,L]

|Q(x, s) − Q̂(x, s)| + |B(s) − B̂(s)|
)

ds

≤
(

ω1 + ρ‖w‖∞ + L‖w‖∞ max
(x,Q)∈D

|βQ(x,Q)| ‖û‖L∞((0,L)×(0,T ))

) ∫ t

0

‖v(s)‖1ds

+

∫ t

0

|C(s) − Ĉ(s)|ds

≤ ρ1

∫ t

0

‖v(s)‖1ds + ‖C − Ĉ‖L1(0,T ),

where ρ1 = ω1 + ρ‖w‖∞ + L‖w‖∞ max
(x,Q)∈D

|βQ(x,Q)| ‖û‖L∞((0,L)×(0,T )).

By (1.2.25) and the above inequality, we have

‖v(t)‖1 ≤ ec1T (‖v(0)‖1 + ‖C − Ĉ‖L1(0,T )) + ec1T ρ1

∫ t

0

‖v(s)‖1ds.

Using Gronwall inequality, we find

‖v(t)‖1 ≤ exp(c1T + ec1T ρ1t)(‖v(0)‖1 + ‖C − Ĉ‖L1(0,T )).

Letting λ = ec1T and γ = ρ1e
c1T , we obtain

‖u(·, t) − û(·, t)‖1 ≤ λeγt
(
‖u(·, 0) − û(·, 0)‖1 + ‖C − Ĉ‖L1(0,T )

)
.

which completes the proof.
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Theorem 1.2.11 shows that the finite difference solution converges to the unique

bounded variation solution of (1.1.1).

1.3 Numerical results

In this section we assume that L = 1. Our first numerical result shows that the condition

gQ ≤ 0 is crucial for the global existence of solutions. In this example, we choose

u0(x) = 3 exp(−10(x − 0.01)2), α = 0.2, w(x) = x and the parameters g, m, β and C as

follows:

g(x,Q) = 5(1 − x)Q exp(−2Q), m(x,Q) = Q/(1 + Q),

β = 0.2x exp(−0.2Q), C(t) = 0.

In this case gQ = 5(1 − x) exp(−2Q)(1 − 2Q). Hence, gQ ≤ 0 for Q ≥ 0.5 and gQ > 0

for Q ∈ [0, 0.5). In Figure 1.1 the 3-D dynamics of the solution is presented (where

4x = 0.01, 4t = 0.01 and T = 1.5). In Figure 1.2 the function U∆x,∆t(x, 1.5) is

plotted for several values of ∆x and ∆t. This figure indicates that a Dirac delta measure

is forming at x ≈ 0.7 and T = 1.5. Hence, the weak solution only exists locally in

time. In fact, in [9] it was formally shown that if g = Q, m = 0, and α = 0, then

Q =
∫ L

x
u(x, t)dx satisfies the famous Burger’s equation and hence becomes discontinuous

in a finite time T > 0. Clearly, each discontinuity in Q corresponds to a Dirac delta

measure in u. Therefore, to extend the solution beyond T , measure valued solutions

have to be considered. For completeness, we present in Figure 1.3 the 2-D distribution

Q(x, 0) and Q(x, 1.5) for the above example. Note that Q(x, 1.5) is discontinuous at

x ≈ 0.7. Furthermore, max[0,1]×[0,1.5] Q(x, t) = 0.4979 < 0.5.

In our second example, we test the performance of the finite difference scheme in

approximating the long-time behavior of solutions to (1.1.1). To this end, we choose

u0(x) = 3 exp(−10(x − 0.5)2), α = 0.5, w(x) = 1, and the parameters g, m, β and C as
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Figure 1.1: The 3-D dynamics of the solution u(x, t).
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Figure 1.2: The 2-D distribution of the solution U∆x,∆t at T = 1.5 for various values of
∆x and ∆t.
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Figure 1.3: The 2-D distribution of Q(x, 0) and Q(x, 1.5).

follows:

g(x,Q) = (1 − x)(3 − x + 1
2
x2 − Q), m(x,Q) = 4 + 2Q + 1

2
(1 − x)2,

β =
300

131
(1 + x)(2 − Q), C(t) = 0.

One can easily verify that for this choice of parameters a nontrivial solution to the

steady-state problem

(g(x,Q(x))u(x))x + m(x,Q(x))u(x) = 0

g(0, Q(0))u(0) =

∫ L

0

β(x,Q(x))u(x)dx

is u∗(x) = 1 − x.

Our numerical results presented in Figure 1.4 indicate that u(x, t) converges to u∗(x)

in L1 norm, and in Figure 1.5 we present u(x, 20) which approximates the function u∗(x)

(where 4x = 0.01, 4t = 0.025 and T = 20).



31

0 2 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

1

1.2

t

L1  n
or

m

Figure 1.4: The L1 norm of U∆x,∆t(x, t) − u∗(x), t ∈ [0, 20]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u(
x,

20
)

Figure 1.5: The graph of U∆x,∆t(x, 20).



Bibliography

[1] A.S. Ackleh, H.T. Banks and K. Deng, A finite difference approximation for a cou-

pled system of nonlinear size-structured populations, Nonlinear Anal. 50 (2002)

727-748.

[2] A.S. Ackleh and K. Ito, An implicit finite difference scheme for the nonlinear size-

structured population model, Numer. Funct. Anal. Optim. 18 (1997), 865-884.

[3] K.W. Blayneh, Hierarchical size-structured population model, Dynam. Systems

Appl. 9 (2002), 527-540.

[4] A. Calsina and J. Saldana, Asymptotic behavior of a model of hierarchically struc-

tured population dynamics, J. Math. Biol. 35 (1997), 967-987.

[5] M.G. Crandall and A. Majda, Monotone difference approximations for scalar con-

servation Laws, J. Math. Comp. 34 (1980), 1-21.

[6] J. Cushing, The dynamics of hierarchical age-structured populations, J. Math. Biol.

32 (1994), 705-729.

[7] J.M. Cushing and J. Li, Juvenile versus adult competition, J. Math. Biol. 29 (1991),

457-473.

[8] S.M. Henson and J.M. Cushing, Hierarchical models of intra-specific competition:

scramble versus contest, J. Math. Biol. 34 (1996), 755-772.



33

[9] E.A. Kraev, Existence and uniqueness for height structured hierarchical population

models, Natur. Resource Modeling 14 (2001), 45-70.

[10] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer, New York,

1994.

[11] J. Weiner and S.X. Thomas, Size variability and competition in plant monocultures,

Oikos 47 (1986), 211-222.



Chapter 2

Parameter Estimation in a Coupled
System of Nonlinear Size-Structured
Populations

In this chapter, a least-squares technique is developed for identifying unknown parameters

in a coupled system of nonlinear size-structured populations. Convergence results for

the parameter estimation technique are established. Ample numerical simulations and

statistical evidence are provided to demonstrate the feasibility of this approach.

2.1 Introduction

A typical direct problem for structured populations is to use the knowledge of underlying

mechanism at individual level such as growth, mortality and reproduction rates to deduce

the behavior at population level. This approach has been extensively studied for many

kinds of models which include structured and non-structured populations. In practice,

however, our knowledge of the vital rates may be incomplete [31]. In fact, in many

animal and plant populations the processes at the individual level are not accessible to

direct observation [34]. For example, for nonlinear structured models the dependence

of reproduction and mortality rates on the total population is sometimes completely

unknown [29]. Even for linear structured models, one may not be able to obtain the

exact dependence of the vital rates on the age or size structure [31]. In these cases, one

resorts to an inverse problem approach, namely to use knowledge about the behavior
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at the population level (e.g, observations of total population numbers) to deduce the

underlying mechanisms at the individual level.

In recent years many researchers have focused their attention on developing method-

ologies for solving inverse problems governed by structured population models (e.g, [1]-

[3], [12]-[17], [19]-[20], [22]-[28], [31]-[35]). In what follows, we briefly review some of the

recent work on such inverse problems. For age-structured population models, several

approaches have been developed to recover unknown individual vital rates. For exam-

ple, in [31, 33] a fixed point iterative technique was developed to determine the death

rate from census data on the age distribution of the population. Therein, conditions on

the data are given that lead to a unique solution. In [23] the authors formulated the

inverse problem as an operator equation and the least squares method is then used to

compute its solution. Due to the ill-posedness of the problem, a regularization technique

was considered. In addition, the authors prove that the resulting scheme has a conver-

gence rate of Hölder type. However, no numerical results were reported. A least squares

approach was also adopted in [19] for a nonlinear age-structured population model to

estimate unknown coefficients from a set of fully discrete observations of the population.

Although the convergence of the computed minimizers to a minimizer of the least squares

problem was established and numerical results were presented, for many real populations

it is generally difficult to obtain discrete observations with respect to age, whereas other

quantities such as total population number are easily obtained. In [22] a model describ-

ing the evolution in time of size/age structured population was considered. A moving

finite element method was used to study the identification problem for such a model.

Convergence results for the parameter estimation technique were reported. In [27], by

writing a linear age-structured model using the cumulative formulation approach (see

e.g., [21]), the authors studied the inverse problem of identifying the birth and death

rates from data on the total population size and the cumulative number of births. They

also provided conditions on the data that guarantee the uniqueness of the solution to the
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inverse problem.

For size-structured population models, the least squares approach has been often used

for parameter identification. For example, it was used in [15, 16] to estimate the growth

rate distribution in a linear size-structured population model. A similar technique was

subsequently applied to a semilinear size-structured model in [28] where the mortality

rate depends on the total population due to competition. In [2] an inverse problem

governed by a phytoplankton aggregation model was studied. Convergence and numerical

results for identifying the coagulation kernel were provided. Later, this technique was

extended to identify parameters in a size-structured population model in [1, 3] where

all the individual vital rates (growth, mortality and reproduction) depend on the total

population level. Therein, these parameters are identified from a set of observations

corresponding to the total population number. A finite difference method was then used

to approximate the infinite dimensional problem. Convergence results for the computed

parameter estimates to the true parameter were established. To our knowledge, [3]was

the first paper to provide convergence results for parameter estimates when the growth

rate is a nonlinear function of the total population (i.e., the size-structured model is

represented by a quasilinear first order hyperbolic initial boundary value problem).

In this chapter we extend the discussion in [3] to the following coupled system of

quasilinear size-structured populations model:

uI
t + (gI(x, P (t; q))uI)x + mI(x, P (t; q))uI = 0, (x, t) ∈ (0, L] × (0, T ],

gI(0, P (t; q))uI(0, t; q) = CI(t) +
N∑

J=1

∫ L

0

γI,JβJ(x, P (t; q))uJ(x, t; q)dx, t ∈ (0, T ],

uI(x, 0; q) = uI,0(x), x ∈ [0, L].

(2.1.1)

Here q = (q1, q2, . . . , qN) with qI = (gI ,mI , βI , CI), I = 1, 2, . . . , N , the parameters to

be identified. The function uI(x, t; q), I = 1, 2, . . . , N , is the parameter-dependent size

density (number per unit size) of individuals in the Ith population having size x at time
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t, and

P (t; q) =
N∑

J=1

∫ L

0

uJ(x, t; q)dx (2.1.2)

is the total population at time t. The function gI denotes the growth rate of an indi-

vidual in the Ith population, mI denotes the mortality rate of an individual in the Ith

population, and βI is the reproduction rate of an individual in the Ith population. The

function CI represents the inflow rate of the Ith population of zero-size individuals from

an external source (e.g., in a tree population model seeds moved by wind).

The model (2.1.1), which was developed by the authors in [4], is a generalization

of several size-structured population models (usually referred to as structured models

with rate distributions) which have been investigated in [14, 15, 16, 28]. Motivated

by the fact that, in addition to observable characteristics such as age or size of the

individuals, non-observable genetic characteristics may often play a crucial role in the

development of the individuals, researchers in [14] presented the first such generalization

of the classical Sinko-Streifer model. This model, which is a linear version of (2.1.1), has

vital individual rates that are independent of the total population and distributed over

an an infinite-dimensional admissible parameter space with a probability measure. It was

shown through numerical simulations in [14] that there is a crucial difference between the

dynamics of distributed rate size-structured population models and the classical Sinko-

Streifer models. In particular, the classical Sinko-Streifer model cannot have dispersion

of the density of the population in age or size except under biologically unreasonable

conditions on the growth rate [15]. That is why the classical Sinko-Streifer models are

in conflict with field data collected by experimental biologists. These data sets show

that a population with unimodal distribution evolves into a bimodal distribution (see

[14] and [30]). In [17] the authors used least squares approach to fit these distributed

rate models to data obtained in [14]. The resulting good fit indicates that the need for

such modification is crucial if these models were to be used as prediction tools.

In addition to extending the theory in [3] to the coupled quasilinear system (2.1.1), a
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main novelty of our current research is that we report on extensive numerical simulations.

These simulations are then used to obtain statistical results which provide solid evidence

on the feasibility of this approach. It is worth pointing out that with the exception of

[25] the above-mentioned articles do not report on any statistical studies.

By a weak solution to problem (2.1.1) we mean a bounded and measurable function

u(x, t; q) = (u1(x, t; q), u2(x, t; q), . . . , uN(x, t; q)) satisfying

∫ L

0

uI(x, t; q)ϕ(x, t)dx −
∫ L

0

uI(x, 0; q)ϕ(x, 0)dx

=

∫ t

0

∫ L

0

(uIϕs + gIuIϕx − mIuIϕ)dx ds

+

∫ t

0

ϕ(0, s)

(
CI(s) +

N∑
J=1

∫ L

0

γI,JβJ(x, P (s; q))uJ(x, s; q)dx

)
ds

(2.1.3)

for t ∈ [0, T ], I = 1, 2, . . . , N , and every test function ϕ ∈ C1([0, L] × [0, T ]).

We first impose a condition on the initial data: for any I = 1, 2, . . . , N

(H1) uI,0 ∈ BV [0, L] and uI,0(x) ≥ 0.

Then let B =
N∏

I=1

BI with BI = C1([0, L]; Cb[0,∞)) × Cb(Ω) × Cb(Ω) × C[0, T ], where

Ω = [0, L]×[0,∞) and Cb(Ω) denotes the space of uniformly bounded continuous functions

on Ω. We assume that our admissible parameter space QI is a compact subset of BI

satisfying (H2)-(H5) below.

(H2) βI(x, P ) is a nonnegative Lipschitz continuous function in x and P with a Lipschitz

constant L1. Furthermore, βI(x, P ) ≤ ω1, where ω1 is a positive constant.

(H3) mI(x, P ) is a nonnegative Lipschitz continuous function in x and P with a Lipschitz

constant L2. Furthermore, mI(x, P ) ≤ ω2, where ω2 is a positive constant.

(H4) gI(x, P ) is twice continuously differentiable with respect to x and satisfies |gI(x, P )|+

|gI
x(x, P )|+|gI

xx(x, P )| ≤ ω3, where ω3 is a positive constant. Furthermore, gI(x, P ) >

0 for x ∈ [0, L) and gI(L, P ) = 0, and gI(x, P ) and gI
x(x, P ) are Lipschitz continuous

in P with a Lipschitz constant L3.



39

(H5) CI(t) is a nonnegative Lipschitz continuous function with a Lipschitz constant L4.

Let Q =
N∏

I=1

QI , then Q is a compact subset of B.

Depending on the values of the constants 0 ≤ γI,J ≤ 1, the model (2.1.1) may have

two different interpretations. If γI,I = 1 and γI,J = 0, I 6= J , the model represents

the dynamics of several populations competing for common resources. On the other

hand, if γI,J > 0, I, J = 1, 2, . . . , N , then the model may describe the dynamics of one

population consisting of N subpopulations, each with its own characteristics. Hence, γI,J

represents the probability that an individual of the Jth subpopulation will reproduce an

individual of the Ith subpopulation. Therefore, two different ways for observing data will

be considered. These lead to the following two different least-squares functionals to be

minimized: The first one is based on the assumption that the model (2.1.1) describes N

different competing populations. Hence observations ZI,k which correspond to the total

number of individuals in the Ith population at time tk are assumed to be available (this

case corresponds to γI,I = 1 and γI,J = 0, I 6= J). We define the least-squares cost

functional for this case to be

J (q) =
∑

I

∑

k

∣∣∣∣log

(∫ L

0

uI(x, tk; q)dx + 1

)
− log(ZI,k + 1)

∣∣∣∣
2

, (2.1.4)

which is minimized over Q. The other case assumes that (2.1.1) models one species

which has been divided into N not readily distinguishable subpopulations. In this case,

we assume that we can only observe aggregate data Zk, the total number of individuals at

time tk (this case corresponds to γI,J > 0, I, J = 1, 2, . . . , N). We define the least-squares

cost functional

J (q) =
∑

k

∣∣∣∣∣log

(
∑

I

∫ L

0

uI(x, tk; q)dx + 1

)
− log(Zk + 1)

∣∣∣∣∣

2

, (2.1.5)

which is minimized over Q.

We remark that minimizing (2.1.4) over Q is equivalent to the maximum likelihood
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estimation of q if

εI,k = log

(∫ L

0

uI(x, tk; q)dx + 1

)
− log(ZI,k + 1)

are i.i.d. normal, and minimizing (2.1.5) over Q is equivalent to the maximum likelihood

estimation of q if

εk = log

(
∑

I

∫ L

0

uI(x, tk; q)dx + 1

)
− log(Zk + 1)

are i.i.d. normal.

The remainder of this chapter is organized as follows. In Section 2.2, we present a finite

difference scheme for computing the solution of (2.1.1) and then provide convergence

results for the parameter estimation technique. In Section 2.3, we give ample numerical

and statistical results. Some concluding remarks are made in Section 2.4.

2.2 Approximation Scheme and Convergence The-

ory

The following notation will be used throughout this chapter: ∆x = L/n and ∆t = T/l

denote the spatial and time mesh size, respectively. The mesh points are given by xj =

j∆x, j = 0, 1, 2, . . . , n and tk = k∆t, k = 0, 1, 2, . . . , l. We denote by uI,k
j (q) and P k(q)

the finite difference approximation of uI(xj, tk; q) and P (tk; q), respectively, and we let

gI,k
j = gI(xj, P

k(q)), βI,k
j = βI(xj, P

k(q)),

mI,k
j = mI(xj, P

k(q)), and CI,k = CI(tk).
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We define the difference operator

D−
h (uI,k

j ) =
uI,k

j − uI,k
j−1

∆x
, 1 ≤ j ≤ n

and the `1, `∞ and the BV norms of uI,k by

‖uI,k‖1 =
n∑

j=1

|uI,k
j |4x, ‖uI,k‖∞ = max

0≤j≤n
|uI,k

j |, ‖uI,k‖BV =
n∑

j=1

|D−
h (uI,k

j )|4x.

We then discretize the partial differential equation in (2.1.1) using the following implicit

finite difference approximation

u
I,k+1
j (q)−u

I,k
j (q)

4t
+

g
I,k
j u

I,k+1
j (q)−g

I,k
j−1u

I,k+1
j−1 (q)

4x
+ mI,k

j uI,k+1
j (q) = 0, 1 ≤ j ≤ n,

gI,k
0 uI,k+1

0 (q) = CI,k +
N∑

J=1

n∑
j=1

γI,JβJ,k
j uJ,k

j (q)4x

P k+1(q) =
N∑

I=1

n∑
j=1

uI,k+1
j (q)∆x

(2.2.1)

with the initial condition

uI,0
j =

1

4x

∫ j4x

(j−1)4x

uI,0(x)dx, j = 1, 2, . . . , n.

If we define

dI,k
j = 1 +

4t

4x
gI,k

j + 4tmI,k
j j = 1, 2, . . . , n, I = 1, 2, . . . , N,

then (2.2.1) can be equivalently written as the following system of linear equations for

~uk+1(q) =
[
u1,k+1

0 (q), u1,k+1
1 (q), . . . , u1,k+1

n (q), u2,k+1
0 (q), u2,k+1

1 (q), . . . , u2,k+1
n (q), . . . ,

uN,k+1
0 (q), uN,k+1

1 (q), . . . , uN,k+1
n (q)

]T

∈ R
N×(n+1)

Ak~uk+1(q) = ~fk(q), (2.2.2)
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where

~fk(q) =

[
C1,k +

N∑

J=1

n∑

j=1

γ1,JβJ,k
j uJ,k

j (q)4x, u1,k
1 (q), . . . , u1,k

n (q),

C2,k +
N∑

J=1

n∑

j=1

γ2,JβJ,k
j uJ,k

j (q)4x, u2,k
1 (q), . . . , u2,k

n (q), . . . ,

CN,k +
N∑

J=1

n∑

j=1

γN,JβJ,k
j uJ,k

j (q)4x, uN,k
1 (q), . . . , uN,k

n (q)

]T

and Ak is the following block diagonal matrix:

Ak =




A1,k 0 0 · · · 0

0 A2,k 0 · · · 0

0 0 A3,k · · · 0

· · · · · · · · · · · · · · ·

0 0 0 · · · AN,k




with the lower triangular matrix

AI,k =




gI,k
0 0 0 · · · 0 0

−4t

4x
gI,k
0 dI,k

1 0 · · · 0 0

0 −4t

4x
gI,k
1 dI,k

2 · · · 0 0

· · · · · · · · · · · · · · · · · ·

0 0 0 · · · −4t

4x
gI,k

n−1 dI,k
n




.

Note that using the assumptions on our parameters one can easily show that equation

(2.2.2) has a unique solution satisfying ~uk+1(q) ≥ 0, k = 0, 1, . . . , l − 1.

The above approximation can be extended to a family of functions {U I
∆x,∆t(x, t; q)}
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defined by

U I
∆x,∆t(x, t; q) = uI,k

j (q) for (x, t) ∈ [xj−1, xj) × [tk−1, tk),

j = 1, 2, . . . , n, k = 1, 2, . . . , l, I = 1, 2, . . . , N.
(2.2.3)

Since our parameter set is infinite dimensional, a finite dimensional approximation of the

parameter space is also necessary for computing minimizers. To this end, we consider

the following finite-dimensional approximations of (2.1.4) and (2.1.5), respectively:

J∆x,∆t(q) =
∑

I

∑

k

∣∣∣∣log

(∫ L

0

U I
∆x,∆t(x, tk; q)dx + 1

)
− log(ZI,k + 1)

∣∣∣∣
2

(2.2.4)

and

J∆x,∆t(q) =
∑

k

∣∣∣∣∣log

(
∑

I

∫ L

0

U I
∆x,∆t(x, tk; q)dx + 1

)
− log(Zk + 1)

∣∣∣∣∣

2

, (2.2.5)

each of which is minimized over QM , a compact finite-dimensional approximation of

the parameter space Q. In order to establish the convergence results for the parameter

estimation technique, we use a similar approach to that in [3], which is based on the

abstract theory in [18].

Theorem 2.2.1. Let qi = (q1,i, q2,i, . . . , qN,i) and suppose that for each I, qI,i → qI in

QI and ∆xi, ∆ti → 0 as i → ∞. Let

U∆xi,∆ti(x, t; qi) = (U1
∆xi,∆ti

(x, t; qi), U2
∆xi,∆ti

(x, t; qi), . . . , UN
∆xi,∆ti

(x, t; qi))

denote the solution of the finite difference scheme, and let

u(x, t; q) = (u1(x, t; q), u2(x, t; q), . . . , uN(x, t; q))
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be the unique weak solution of our problem with initial condition

u0(x) = (u1,0(x), u2,0(x), . . . , uN,0(x))

and parameter q, then U I
∆xi,∆ti

(x, t; qi) → uI(x, t; q) in L1(0, L) uniformly in t ∈ [0, T ].

Proof. Define uI,k,i
j = uI,k

j (qi). From the fact that QI is compact and the results of [4],

there exist positive constants c1, c2, c3, c4 such that for each I = 1, 2, . . . , N , we have
N∑

I=1

‖uI,k,i‖1 ≤ c1, ‖uI,k,i‖∞ ≤ c2, ‖uI,k,i‖BV ≤ c3 and
n∑

j=1

∣∣∣∣
u

I,r,i
j −u

I,s,i
j

∆ti

∣∣∣∣ ∆xi ≤ c4(r − s),

where r > s. Thus, for each I there exists a BV ([0, L] × [0, T ]) function ûI(x, t) such

that U I
∆xi,∆ti

(x, t; qi) → ûI(x, t) in L1(0, L) uniformly in t. Hence, from the uniqueness

of bounded variation weak solutions stated in [4], we only need to show that û(x, t) =

(û1(x, t), û2(x, t), . . . , ûN(x, t)) is the weak solution corresponding to the parameter q.

To this end, we multiply the first equation of (2.2.1) by ϕk+1
j = ϕ(xj, tk+1), where ϕ ∈

C1([0, L] × [0, T ]), to obtain

uI,k+1,i
j ϕk+1

j − uI,k,i
j ϕk

j

∆ti
− uI,k,i

j

ϕk+1
j − ϕk

j

∆ti
+

gI,k,i
j uI,k+1,i

j ϕk+1
j − gI,k,i

j−1 uI,k+1,i
j−1 ϕk+1

j−1

∆xi

−gI,k,i
j−1 uI,k+1,i

j−1

ϕk+1
j − ϕk+1

j−1

∆xi

+ mI,k,i
j uI,k+1,i

j ϕk+1
j = 0.

Multiplying the above equality both sides by ∆xi∆ti and summing over j = 1, 2, . . . , n,

k = 0, 1, . . . , l − 1, we find

n∑

j=1

(
uI,l,i

j ϕl
j − uI,0,i

j ϕ0
j

)
∆xi −

l−1∑

k=0

n∑

j=1

uI,k,i
j

ϕk+1
j − ϕk

j

∆ti
∆xi∆ti

+
l−1∑

k=0

gI,k,i
n uI,k+1,i

n ϕk+1
n − gI,k,i

0 uI,k+1,i
0 ϕk+1

0

∆xi

∆xi∆ti

−
l−1∑

k=0

n∑

j=1

gI,k,i
j−1 uI,k+1,i

j−1

ϕk+1
j − ϕk+1

j−1

∆xi

∆xi∆ti +
l−1∑

k=0

n∑

j=1

mI,k,i
j uI,k+1,i

j ϕk+1
j ∆xi∆ti = 0.
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Since gI,k,i
n = 0 and qI,i → qI as i → ∞ in QI , passing to the limit we have

∫ L

0

ûI(x, t)ϕ(x, t)dx −
∫ L

0

ûI(x, 0)ϕ(x, 0)dx

=

∫ t

0

∫ L

0

(
ûIϕs + gI ûIϕx − mI ûIϕ

)
dx ds

+

∫ t

0

ϕ(0, s)

(
CI(s) +

N∑

J=1

∫ L

0

γI,JβJ(x, P (s))ûJ(x, s)dx

)
ds.

Thus, û(x, t) is the weak solution corresponding to the parameter q.

Since the logarithm function is continuous on [1,∞), as an immediate consequence of

Theorem 2.2.1, we obtain the following:

Corollary 2.2.2. Let U∆x,∆t denote the numerical solution of (2.2.1) with parameter

qi → q and ∆xi, ∆ti → 0. Then

J∆xi,∆ti(q
i) → J (q), as i → ∞.

In the next theorem, we establish the continuity of the approximate cost functional,

so that the computational problem of finding approximate minimizer is well-posed.

Theorem 2.2.3. Let ∆x and ∆t be fixed. For each qI ∈ QI , let U I
∆x,∆t(x, t; q) de-

note the solution of the finite difference scheme, and qI,i → qI as i → ∞ in QI , then

U I
∆x,∆t(x, t; qi) → U I

∆x,∆t(x, t; q) as i → ∞ in L1(0, L) uniformly in t ∈ [0, T ].

Proof. Define {uI,k,i
j } and {uI,k

j } to be the solution of the finite difference scheme with

parameter qi and q, respectively. Let vI,k,i
j = uI,k,i

j −uI,k
j , then vI,k,i

j satisfies the following:

vI,k+1,i
j − vI,k,i

j

∆t
+ D−

h

[
gI,i(xj, P

k,i)uI,k+1,i
j − gI(xj, P

k)uI,k+1
j

]

+mI,i(xj, P
k,i)vI,k+1,i

j +
[
mI,i(xj, P

k,i) − mI(xj, P
k)

]
uI,k+1

j = 0,

(2.2.6)
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for 1 ≤ j ≤ n, and

gI,i(0, P k,i)uI,k+1,i
0 − gI(0, P k)uI,k+1

0

= CI,i(tk) − CI(tk) +
N∑

J=1

n∑
j=1

γI,JβJ,i(xj, P
k,i)vJ,k,i

j ∆x

+
N∑

J=1

n∑
j=1

γI,J
[
βJ,i(xj, P

k,i) − βJ(xj, P
k)

]
uJ,k

j ∆x,

(2.2.7)

where P k,i denotes P k(qi). Multiplying both sides of (2.2.6) by sgn(vI,k+1,i
j )∆x and

summing over j = 1, 2, . . . , n, we obtain

‖vI,k+1,i‖1 − ‖vI,k,i‖1

∆t

≤ −
n∑

j=1

D−
h

[
gI,i(xj, P

k,i)uI,k+1,i
j − gI(xj, P

k)uI,k+1
j

]
sgn(vI,k+1,i

j )∆x

−
n∑

j=1

mI,i(xj, P
k,i)

∣∣∣vI,k+1,i
j

∣∣∣ ∆x

−
n∑

j=1

[
mI,i(xj, P

k,i) − mI(xj, P
k)

]
uI,k+1

j sgn(vI,k+1,i
j )∆x.

(2.2.8)

Using the fact for any aj with aj ≥ 0, j = 0, 1, 2, . . . , n, we have

n∑

j=1

D−
h (ajbj)sgn(bj)∆x ≥ an|bn| − a0|b0|,

we obtain

−
n∑

j=1

D−
h

[
gI,i(xj, P

k,i)uI,k+1,i
j − gI(xj, P

k)uI,k+1
j

]
sgn(vI,k+1,i

j )∆x

= −
n∑

j=1

D−
h

(
gI,i(xj, P

k,i)vI,k+1,i
j

)
sgn(vI,k+1,i

j )∆x

−
n∑

j=1

D−
h

[(
(gI,i(xj, P

k,i) − gI(xj, P
k)

)
uI,k+1

j

]
sgn(vI,k+1,i

j )∆x

≤ gI,i(0, P k,i)|vI,k+1,i
0 | + sup

1≤j≤n

∣∣gI,i(xj, P
k,i) − gI(xj, P

k)
∣∣ ‖uI,k+1‖BV

+ sup
1≤j≤n

∣∣D−
h

(
gI,i(xj, P

k,i) − gI(xj, P
k)

)∣∣ (
‖uI,k+1‖∞ + (‖uI,k+1‖1

)
.

(2.2.9)
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By (2.2.7), we have

gI,i(0, P k,i)|vI,k+1,i
0 |

≤
∣∣gI,i(0, P k,i) − gI(0, P k)

∣∣uI,k+1
0 +

∣∣CI,i(tk) − CI(tk)
∣∣

+ω1

N∑
J=1

‖vJ,k,i‖1 + max1≤J≤N sup
1≤j≤n

∣∣βJ,i(xj, P
k,i) − βJ(xj, P

k)
∣∣ N∑

J=1

‖uJ,k‖1.

(2.2.10)

Summing (2.2.8) over I = 1, 2, . . . , N , and using (2.2.9) and (2.2.10), we obtain

N∑
I=1

‖vI,k+1,i‖1 −
N∑

I=1

‖vI,k,i‖1

∆t

≤ max
1≤I≤N

sup
1≤j≤n

∣∣D−
h

(
gI,i(xj, P

k,i) − gI(xj, P
k)

)∣∣
(

N max
1≤I≤N

‖uI,k+1‖∞ +
N∑

I=1

‖uI,k+1‖1

)

+N max
1≤I≤N

sup
1≤j≤n

∣∣gI,i(xj, P
k,i) − gI(xj, P

k)
∣∣ max

1≤I≤N
‖uI,k+1‖BV

+N max
1≤I≤N

∣∣gI,i(0, P k,i) − gI(0, P k)
∣∣ max

1≤I≤N
‖uI,k+1‖∞ + N max

1≤I≤N

∣∣CI,i(tk) − CI(tk)
∣∣

+N max
1≤J≤N

sup
1≤j≤n

∣∣βJ,i(xj, P
k,i) − βJ(xj, P

k)
∣∣

N∑

J=1

‖uJ,k‖1 + Nω1

N∑

I=1

‖vI,k,i‖1

+ max
1≤I≤N

sup
1≤j≤n

∣∣mI,i(xj, P
k,i) − mI(xj, P

k)
∣∣

N∑

I=1

‖uI,k+1‖1.

Noticing that

∣∣gI,i(xj, P
k,i) − gI(xj, P

k)
∣∣

≤
∣∣gI,i(xj, P

k,i) − gI,i(xj, P
k)

∣∣ +
∣∣gI,i(xj, P

k) − gI(xj, P
k)

∣∣ ,

we have from (H4) the following:

max
1≤I≤N

sup
1≤j≤n

∣∣gI,i(xj, P
k,i) − gI(xj, P

k)
∣∣

≤ L3

N∑

I=1

‖vI,k,i‖1 + max
1≤I≤N

sup
1≤j≤n

∣∣gI,i(xj, P
k) − gI(xj, P

k)
∣∣ .



48

Similarly, we can show that

max
1≤I≤N

sup
1≤j≤n

∣∣βI,i(xj, P
k,i) − βI(xj, P

k)
∣∣

≤ L1

N∑

I=1

‖vI,k,i‖1 + max
1≤I≤N

sup
1≤j≤n

∣∣βI,i(xj, P
k) − βI(xj, P

k)
∣∣

and

max
1≤I≤N

sup
1≤j≤n

∣∣mI,i(xj, P
k,i) − mI(xj, P

k)
∣∣

≤ L2

N∑

I=1

‖vI,k,i‖1 + max
1≤I≤N

sup
1≤j≤n

∣∣mI,i(xj, P
k) − mI(xj, P

k)
∣∣ .

Furthermore, straightforward computations yield

∣∣D−
h

[
gI,i(xj, P

k,i) − gI(xj, P
k)

]∣∣

=

∣∣∣∣
1

∆x

(∫ 1

0

d

dr
gI,i(rxj + (1 − r)xj−1, P

k,i)dr −
∫ 1

0

d

dr
gI(rxj + (1 − r)xj−1, P

k)dr

)∣∣∣∣

=

∣∣∣∣
∫ 1

0

gI,i
x (rxj + (1 − r)xj−1, P

k,i)dr −
∫ 1

0

gI
x(rxj + (1 − r)xj−1, P

k)dr

∣∣∣∣

≤
∫ 1

0

∣∣gI,i
x (rxj + (1 − r)xj−1, P

k,i) − gI,i
x (rxj + (1 − r)xj−1, P

k)
∣∣ dr

+

∫ 1

0

∣∣gI,i
x (rxj + (1 − r)xj−1, P

k) − gI
x(rxj + (1 − r)xj−1, P

k)
∣∣ dr.

Hence, from (H4) we obtain

max
1≤I≤N

sup
1≤j≤n

∣∣D−
h

[
gI,i(xj, P

k,i) − gI(xj, P
k)

]∣∣

≤ L3

N∑

I=1

‖vI,k,i‖1 + max
1≤I≤N

sup
1≤j≤n

∫ 1

0

∣∣gI,i
x (x̄j, P

k) − gI
x(x̄j, P

k)
∣∣ dr,
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where x̄j = rxj + (1 − r)xj−1. Set

δk = L3

(
N max

1≤I≤N
‖uI,k+1‖∞ +

N∑

I=1

‖uI,k+1‖1

)
+ NL1

N∑

I=1

‖uI,k‖1 + Nω1

+NL3

(
max

1≤I≤N
‖uI,k+1‖BV + max

1≤I≤N
‖uI,k+1‖∞

)
+ L2

N∑

I=1

‖uI,k+1‖1

and

ρk,i =

(
N max

1≤I≤N
‖uI,k+1‖∞ +

N∑

I=1

‖uI,k+1‖1

)
max

1≤I≤N
sup

1≤j≤n

∫ 1

0

∣∣gI,i
x (x̄j, P

k) − gI
x(x̄j, P

k)
∣∣ dr

+N max
1≤I≤N

‖uI,k+1‖BV max
1≤I≤N

sup
1≤j≤n

∣∣gI,i(xj, P
k) − gI(xj, P

k)
∣∣

+N max
1≤I≤N

‖uI,k+1‖∞ max
1≤I≤N

∣∣gI,i(0, P k) − gI(0, P k)
∣∣ + N max

1≤I≤N

∣∣CI,i(tk) − CI(tk)
∣∣

+N

N∑

I=1

‖uI,k‖1 max
1≤I≤N

sup
1≤j≤n

∣∣βI,i(xj, P
k) − βI(xj, P

k)
∣∣

+
N∑

I=1

‖uI,k+1‖1 max
1≤I≤N

sup
1≤j≤n

∣∣mI,i(xj, P
k) − mI(xj, P

k)
∣∣ .

Then, we have

N∑
I=1

‖vI,k+1,i‖1 −
N∑

I=1

‖vI,k,i‖1

∆t
≤ δk

N∑

I=1

‖vI,k,i‖1 + ρk,i.

Since for each k, ρk,i → 0 as i → ∞, the desired result easily follows from this inequality.

Theorem 2.2.4. Suppose that QM is a sequence of compact subsets of Q. Moreover,

assume that for each q ∈ Q, there exists a sequence of qM ∈ QM such that qM → q as

M → ∞. Then the functional J∆x,∆t has a minimizer over QM . Furthermore, if qi
M

denotes a minimizer of J∆xi,∆ti over QM and ∆xi, ∆ti → 0, then any subsequence of qi
M

has a further subsequence which converges to a minimizer of J .

Proof. The proof of this theorem is a direct application of the abstract theory in [18],



50

based on the convergence of J∆xi,∆ti(q
i) → J (q).

2.3 Numerical Results

In this section, we present ample numerical simulations and statistical results. In all of

the simulations below we assume L = 1, T = 1, and CI(t) = 0 for I = 1, 2, . . . , N .

In subsections 3.1 and 3.2, we assume N = 1 and that all the parameters are known

except for β. To estimate β we use data which are generated computationally as follows:

Let

u0(x) = 3 exp(−2(x − 0.5)2), g(x, P ) = 5(1 − x) exp(−3P ),

m(x, P ) = exp(4(x − 0.4)2) exp(0.2P ), β(x, P ) = 6x(1 − x) exp(−3P ),

and we solve (2.2.1) and (2.2.3) for U∆x,∆t(x, t). We set the data Zk = (1+εk)

∫ 1

0

U∆x,∆t(x, tk)dx,

where εk is a random sample from a normal random number generator with mean zero

and standard deviation σ = 0.02.

2.3.1 1−D linear estimation problem for finite dimensional pa-
rameter space when N = 1

In our first example we assume that β is of a separable form given by β(x, P ) =

b(x) exp(−3P ), where b(x) = µx(1 − xν) with µ and ν two unknown constants to be

identified. Hence, the solution to our least-squares problems involves identifying the two

constants µ and ν from a compact subset of R
2
+ so as to minimize the least-squares cost

functional

J∆x,∆t(q) =
m∑

k=1

∣∣∣∣log

(∫ 1

0

U∆x,∆t(x, tk; q)dx + 1

)
− log(Zk + 1)

∣∣∣∣
2

.
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In order to test the performance of the parameter-estimation technique when no

infinite dimensional effects are present, in Figure 2.1 we choose ∆x = ∆t = 0.005 for

both generating the data and the numerical solution (2.2.3) in the least-squares problem.

This avoids the infinite-dimensional effect of the partial differential equation given in

(2.1.1). In fact, if the noise is removed from the data, and the parameters µ and ν are

known, then numerically solving our model produces the exact data.

In Figure 2.2 we use ∆x = ∆t = 0.005 to generate the data while we use ∆x =

∆t = 0.01 for the numerical solution (2.2.3) in the least-squares problem. Thus, in this

case the data are not exactly attained by our model even if the noise is removed (an

error is present due to the finite-dimensional approximation of our infinite-dimensional

model). The results of Figure 2.2 are obtained by using the same values for the rest of

the parameters as those of Figure 2.1.

A similar format for presenting the results of 1000 inverse problem calculations was

used in Figure 2.1 and 2.2. The left part of each of the figures represents the S (for

our case S = 1000) numerical results for the estimated parameter bs(x) (s = 1, 2, . . . , S)

versus the exact b(x), where these 1000 distinct numerical results graphed were obtained

by solving 1000 inverse problems, each of which corresponds to a given noise sample {εk}.

The right part represents the figure of the corresponding 95% confidence interval (dashed

line) versus the exact b(x) (solid line), where the 95% confidence interval is obtained by

choosing the band between the upper 2.5% and lower 2.5% of these 1000 numerical

results. Table 1 provides statistical results for the corresponding graphs, where AB(x) =

1

S

S∑
s=1

(bs(x) − b(x)) denotes the average bias for all approximations at x, RAB(x) =

100AB(x)
b(x)

denotes the relative average bias for all approximations at x and SE(x) =
[

1

S − 1

S∑
s=1

(bs(x) − b(x) − AB(x))2

] 1
2

denotes the standard error at the point x.

Although the estimates in both figures are good, the results in Figures 2.1-2.2 and

Table 2.1 suggest that infinite-dimensional effects can lead to a slightly under biased

estimator. We suspect that this bias depends on the choice of the numerical scheme
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used for solving the infinite-dimensional partial differential equation model. Here we

are using an upwind scheme for approximating the model and a right-hand sum for

approximating all the integrals involved. This biased estimator may be improved if, for

example, a centered finite difference approximation is used together with a trapezoidal

rule for integration.
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Figure 2.1: ∆x = ∆t = 0.005 to generate the data and solve the least-squares. For the
left part of the figure, each of the grey lines (....) denotes a distinct result for a given
sample {εk}.
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Figure 2.2: ∆x = ∆t = 0.005 to generate the data and ∆x = ∆t = 0.01 to solve the
least-squares. For the left part of the figure, each of the grey lines (....) denotes a distinct
result for a given sample {εk}.

The above statistical results (essentially on how measurement error affects estimates)

are based on a large number of numerical simulations (somewhat in the spirit of Bayesian
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x AB(x) RAB(x) SE(x)
0.1 -0.0037 -0.6870 0.0749
0.2 -0.0092 -0.9580 0.0993
0.3 -0.0107 -0.8463 0.0975
0.4 -0.0079 -0.5497 0.0860
0.5 -0.0021 -0.1427 0.0798
0.6 0.0049 0.3378 0.0852
0.7 0.0110 0.8707 0.0926
0.8 0.0138 1.4425 0.0882
0.9 0.0110 2.0444 0.0605

x AB(x) RAB(x) SE(x)
0.1 -0.0390 -7.2314 0.0747
0.2 -0.0651 -6.7812 0.1053
0.3 -0.0768 -6.0949 0.1130
0.4 -0.0763 -5.2995 0.1124
0.5 -0.0666 -4.4422 0.1138
0.6 -0.0511 -3.5460 0.1188
0.7 -0.0331 -2.6236 0.1202
0.8 -0.0162 -1.6830 0.1075
0.9 -0.0039 -0.7294 0.0706

Table 2.1: Left and right tables are statistical results for Figure 2.1 and Figure 2.2,
respectively.

based MCMC calculations used to estimate means and variances in a probabilty distribu-

tion from ”experimental” data). Any estimate of model parameters from data can also

be accompanied by an estimate of uncertainty using standard regression formulations

from statistics [36]. Thus, in the remaining part of this subsection, we present a statis-

tical based method to actually compute the variance in the estimated model parameters

q = (µ, ν).

To perform this analysis, we need to compute the sensitivity matrix

X(q) =




Pµ(t1;q)

1+P (t1;q)
Pν(t1;q)

1+P (t1;q)

Pµ(t2;q)

1+P (t2;q)
Pν(t2;q)

1+P (t2;q)

· · · · · ·
Pµ(tm;q)

1+P (tm;q)
Pν(tm;q)

1+P (tm;q)




. (2.3.1)

Note that we cannot compute P (t; q), Pµ(t; q) and Pν(t; q) directly from our model.

Therefore, we use the difference scheme (2.2.1) to obtain the following approximation of

P (t; q):

P̂ (t; q) =

∫ 1

0

U∆x,∆t(x, t; q)dx.

Then we use a forward difference approximation for the derivative Pµ(t; q) and Pν(t; q)
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given by

P̂µ(t; µ, ν) =
1

∆µ

(
P̂ (t; µ + ∆µ, ν) − P̂ (t; µ, ν)

)

and

P̂ν(t; q) =
1

∆ν

(
P̂ (t; µ, ν + ∆ν) − P̂ (t; µ, ν)

)
.

Substituting P̂ (ti; q), P̂µ(ti; q) and P̂ν(ti, q) for P (ti; q), Pµ(ti; q) and Pν(ti; q) in (2.3.1),

respectively, we obtain the following approximation of X(q):

X̂(q) =




P̂µ(t1;q)

1+P̂ (t1;q)

P̂ν(t1;q)

1+P̂ (t1;q)

P̂µ(t2;q)

1+P̂ (t2;q)

P̂ν(t2;q)

1+P̂ (t2;q)

· · · · · ·
P̂µ(tm;q)

1+P̂ (tm;q)

P̂ν(tm;q)

1+P̂ (tm;q)




.

Under standard assumptions of classical nonlinear regression theory, we know that if

ε̂i ∼ N (0, σ2), where ε̂i is the difference between observation and model at time ti, then

the least-squares estimate q∗ is expected to be asymptotically normally distributed. In

particular, for large samples, we may assume

q∗ ∼ N [q0, σ
2{XT (q0)X(q0)}−1], (2.3.2)

where q0 is the true vector of parameters and σ2{XT (q0)X(q0)}−1 is the true covariance

matrix (see [36], Chapter 2).

Since q0 and σ2 are not available, we follow a standard statistical practice [5]: substi-

tute the computed estimate q∗ for q0 and approximate σ2 by

σ̂2 =
1

m − 2

m∑

j=1

(
log

(
P̂ (tj; q

∗) + 1
)
− log(Zj + 1)

)2

(2.3.3)
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in (2.3.2) to obtain the standard deviation for our estimates. In particular, if

V = σ̂2{X̂T (q∗)X̂(q∗)}−1 =




V11 V12

V21 V22


 ,

then we take
√

V11 and
√

V22 to be the standard deviation for parameters µ and ν,

respectively. The following two tables are the standard deviation of µ and ν for the

results of the first eight numerical simulations of Figure 2.1 and Figure 2.2, respectively.

µ 1.1613 1.0494 1.0451 1.1109 1.0864 1.4684 1.1605 1.0512
ν 1.2124 0.3073 0.2999 0.2741 0.2701 1.5555 0.2482 0.2390

Table 2.2: Standard deviation for the results of the first 8 numerical simulations of Figure
2.1.

µ 1.7066 1.5636 1.6192 1.7974 1.6389 2.8009 1.8619 1.3893
ν 0.7716 0.3238 0.4838 0.1812 0.3426 2.8685 0.3828 0.4136

Table 2.3: Standard deviation for the results of the first 8 numerical simulations of Figure
2.2.

Table 2.4 provide the average standard deviation of µ and ν for the results of all

the 1000 numerical simulations of Figure 2.1 and Figure 2.2, respectively. We note that

in most practical situations using experimental data, one does not expect to have 1000

experiments performed. But the above procedures will produce estimates of variances

even in the case when one has only one data set!

Figure 1 Figure 2
µ 1.1921 1.9197
ν 0.4566 0.8572

Table 2.4: Average of standard deviation for all the results of the numerical simulations
of Figures 2.1-2.2.
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2.3.2 1 − D linear estimation problem for infinite dimensional
parameter space when N = 1

In this example, we assume that β is of a separable form given by β(x, P ) = b(x) exp(−3P ),

where b(x) is an unknown parameter that we want to identify.

Let

D = {f ∈ C[0, 1] : |f(x) − f(y)| ≤ K|x − y|, f(0) = f(1) = 0}.

Choose the parameter space Q = D. Clearly, by Arzela-Ascoli Theorem [37] Q is compact

in C[0, 1]. We approximate the infinite dimensional parameter space as follows: For M a

positive integer and b ∈ Q, we set

(IMb)(x) =
M−1∑

i=1

b

(
i

M

)
φi

M(x; 0, 1),

where φi
M(x; 0, 1) are the linear spline functions on a uniform mesh of the interval [0, 1].

These are defined by

φi
M(x; 0, 1) =





1 − i + x
h
, (i − 1)h ≤ x ≤ ih,

1 + i − x
h
, ih ≤ x ≤ (i + 1)h, i = 1, 2, . . . ,M − 1,

0, |x − ih| ≥ h,

where h = 1
M

. It can be readily argued that lim
M→∞

IMb = b in C[0, 1], uniformly in b [8].

Hence, if bM ∈ QM = IM(Q) is given by

bM(x) =
M−1∑

i=1

λi
Mφi

M(x; 0, 1),

then the solution of our finite dimensional identification problem involves identifying

the M − 1 coefficients {λi
M}M−1

i=1 from a compact subset of R
M−1
+ so as to minimize the

least-squares cost functional (2.2.4).

In order to indirectly implement the compactness constraints of Q, we use a regular-
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ized least squares cost functional of the form

J∆x,∆t(q) =
m∑

k=1

∣∣∣∣log

(∫ 1

0

U∆x,∆t(x, tk; q)dx + 1

)
− log(Zk + 1)

∣∣∣∣
2

+ α

∫ 1

0

∣∣∣∣
d

dx
bM(x)

∣∣∣∣
2

dx,

where α > 0 is the regularization parameter.

The left part of each of the following figures again represents the S (=1000) numerical

results of the estimated parameter versus the exact parameter b(x). The right part rep-

resents the figure of the corresponding 95% confidence interval (dashed line) versus the

exact b(x) (solid line). The tables provide statistical results for the corresponding graphs.

Effect of infinite-dimensional model on parameter estimate.

In Figure 2.3 we use ∆x = 0.005 and ∆t = 0.005 to generate the data and the numer-

ical solution (2.2.3) for the least-squares problem. This removes the infinite-dimensional

effect of the partial differential equation given by (2.1.1). However, in Figure 2.4 we use

∆x = ∆t = 0.005 to generate the data and ∆x = ∆t = 0.01 to compute (2.2.3). Thus, in

this case the data are not exactly attained by our model even if the noise is removed. We

observe that while the estimates in both figures are good, the results in Figures 2.3-2.4

and Table 2.5 suggest that infinite-dimensional effects can lead to a slightly under biased

estimator.

Effect of regularization parameter α on parameter estimate.

In Figures 2.5 and 2.6 we change the parameter α while keeping the rest fixed. Clearly,

low regularization parameter leads to relatively bad estimates although the estimator in

this case seems to be the least biased (see Figure 2.5 and left part of Table 2.6). Increasing

the value of α leads to better parameter estimates, but the estimator becomes more under

biased (see Figure 2.6 and right part of Table 2.6). If this value is increased more, the
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Figure 2.3: M = 10, α = 3e− 5. Each of the grey lines (....) of the left part of the figure
denotes a distinct result for a given sample {εk}.

x AB(x) RAB(x) SE(x)
0.1 -0.0778 -14.4108 0.0723
0.2 -0.0816 -8.5015 0.1070
0.3 -0.0400 -3.1727 0.1012
0.4 0.0110 0.7636 0.0834
0.5 0.0386 2.5745 0.0818
0.6 0.0283 1.9621 0.0868
0.7 -0.0124 -0.9880 0.0779
0.8 -0.0559 -5.8206 0.0556
0.9 -0.0623 -11.5426 0.0280

x AB(x) RAB(x) SE(x)
0.1 -0.1236 -22.8940 0.0667
0.2 -0.1571 -16.3628 0.1040
0.3 -0.1284 -10.1885 0.1141
0.4 -0.0785 -5.4485 0.1130
0.5 -0.0440 -2.9329 0.1110
0.6 -0.0446 -3.0966 0.1049
0.7 -0.0754 -5.9875 0.0885
0.8 -0.1059 -11.0334 0.0624
0.9 -0.0939 -17.3949 0.0323

Table 2.5: Left and right tables are statistical results for Figure 2.3 and Figure 2.4,
respectively.
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Figure 2.4: M = 10, α = 3e− 5. Each of the grey lines (....) of the left part of the figure
denotes a distinct result for a given sample {εk}.



59

estimator is more biased. Also the parameter estimate becomes worse than before. This

suggests, not surprisingly, that there is an optimal choice for the parameter α which

produces the best results for the parameter estimates.
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Figure 2.5: M = 10, α = 1e− 5. Each of the grey lines (....) of the left part of the figure
denotes a distinct result for a given sample {εk}.

x AB(x) RAB(x) SE(x)
0.1 -0.1277 -23.6389 0.1206
0.2 -0.1648 -17.1644 0.1791
0.3 -0.1284 -10.1938 0.1618
0.4 -0.0599 -4.1591 0.1221
0.5 -0.0072 -0.4806 0.1169
0.6 0.0026 0.1788 0.1274
0.7 -0.0253 -2.0101 0.1126
0.8 -0.0631 -6.5678 0.0780
0.9 -0.0642 -11.8944 0.0427

x AB(x) RAB(x) SE(x)
0.1 -0.1241 -22.9816 0.0506
0.2 -0.1621 -16.8881 0.0842
0.3 -0.1432 -11.3627 0.1011
0.4 -0.1050 -7.2906 0.1078
0.5 -0.0791 -5.2736 0.1087
0.6 -0.0837 -5.8139 0.1009
0.7 -0.1077 -8.5443 0.0847
0.8 -0.1288 -13.4165 0.0602
0.9 -0.1042 -19.3027 0.0313

Table 2.6: Left and right tables are statistical results for Figure 2.5 and Figure 2.6,
respectively.

2.3.3 1 − D linear estimation problem for infinite dimensional
parameter space when N = 2

In this section, we assume N = 2 and that all the parameters are known except for β1

and β2. To estimate β1 and β2, we assume that they are of a separable form given by



60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

b

approximate
exact

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

b

Figure 2.6: M = 10, α = 5e− 5. Each of the grey lines (....) of the left part of the figure
denotes a distinct result for a given sample {εk}.

β1(x, P ) = b1(x) exp(−P ) and β2(x, P ) = b2(x) exp(−P ), respectively, where b1(x) and

b2(x) are unknown parameters to be identified. To estimate b1(x) and b2(x), we use data

which are generated computationally as follows: Let γI,J =





1, I = J

0, I 6= J
for Figure

2.7 and γI,J = 0.5, I, J = 1, 2 for Figure 2.8, uI,0(x) = 3 exp(−2(x − 0.1)2), and for the

parameters gI ,mI and βI we use the following choice of functions:

g1 = 2(1 − x) exp(−0.8P ), g2 = (1 − x)(1 + 2P ) exp(−P ),

m1 = exp(2(x − 0.4)2) exp(0.2P ), m2 = exp(2(x − 0.4)2) exp(0.2P ),

β1 = 6(1 − x)x exp(−P ), β2 = 6(1 − x)x exp(−5(x − 0.5)2) exp(−P ),

and solve (2.1.1) for U I
∆x,∆t(x, t), I = 1, 2. We set the data ZI,k = (1+εI,k)

∫ 1

0

U I
∆x,∆t(x, tk)dx,

I = 1, 2 for Figure 2.7 and Zk = (1 + εk)
2∑

I=1

∫ 1

0

U I
∆x,∆t(x, tk)dx for Figure 2.8, where εI,k

and εk both are the random sample from a normal random number generator with mean

zero and standard deviation σ = 0.02.

We choose the parameter space Q = D×D. Clearly, Q is compact in C[0, 1]×C[0, 1].

We approximate the infinite dimensional parameter space as follows: For M1, M2 positive
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integers and any (b1, b2) ∈ Q, we set

(IMJ
bJ)(x) =

MJ−1∑

i=1

bJ

(
i

MJ

)
φi

MJ
(x; 0, 1), J = 1, 2.

Clearly, lim
MJ→∞

IMJ
bJ = bJ in C[0, 1], uniformly in bJ , J = 1, 2. Hence, if bJ

MJ
∈ QMJ

=

IMJ
(Q) is given by

bJ
MJ

(x) =

MJ−1∑

i=1

λJ,i
MJ

φi
MJ

(x; 0, 1), J = 1, 2,

then the solution of our finite dimensional identification problem involves identifying

the M1 + M2 − 2 coefficients {λJ,i
MJ

}MJ−1,2
i=1,J=1 from a compact subset of R

M1+M2−2
+ so as to

minimize the least-squares cost functional (2.2.4) or (2.2.5).

In order to indirectly implement the compactness constraints of Q, we still use the

regularized least-squares cost functional. For Figure 2.7 we use the form

J∆x,∆t(q) =
2∑

I=1

m∑

k=1

∣∣∣∣log

(∫ 1

0

U I
∆x,∆t(x, tk; q)dx + 1

)
− log(ZI,k + 1)

∣∣∣∣
2

+
2∑

I=1

αI

∫ 1

0

∣∣∣∣
d

dx
bI
MI

(x)

∣∣∣∣
2

dx,

and for Figure 2.8 we use the form

J∆x,∆t(q) =
m∑

k=1

∣∣∣∣∣log

(
2∑

I=1

∫ 1

0

U I
∆x,∆t(x, tk; q)dx + 1

)
− log(Zk + 1)

∣∣∣∣∣

2

+
2∑

I=1

αI

∫ 1

0

∣∣∣∣
d

dx
bI
MI

(x)

∣∣∣∣
2

dx,

where αI > 0, I = 1, 2 are the regularization parameters and m = 100 for Figures 2.7

and 2.8.

In the rest of our simulations we use ∆x = ∆t = 0.005 to generate the data and

∆x = ∆t = 0.01 to solve the least-squares. Thus, in these cases the data are not exactly
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attained by our model even if the noise is removed.

The upper-left part and the lower-left part of the following two figures represent the

S (=1000) numerical results of the estimated parameters b1
M1

(x) and b2
M2

(x) versus the

exact parameters b1(x) and b2(x), respectively. The upper-right part and the lower right

part represent the figures of the corresponding 95% confidence interval (dashed line)

versus the exact b1(x) and b2(x) (solid line), respectively. The tables provide statistical

results for the corresponding graphs.

Note that the results in Figure 2.7 and Table 2.7 are slightly better than those in

Figure 2.8 and Table 2.8. This is expected since in Figure 2.7 we are sampling data for

each of the two populations, which provides more information than sampling the sum of

the two populations only, as is the case in Figure 2.8. Also note that in both of these

figures we let M = M1 = M2 = 10.
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Figure 2.7: M = 10, α1 = 5e − 5, α2 = 5e − 5. Each of the grey lines (....) of the left
part of the figure denotes a distinct result for a given sample {εI,k}.
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x AB(x) RAB(x) SE(x)
0.1 -0.0187 -3.4717 0.0880
0.2 -0.0004 -0.0447 0.1276
0.3 0.0334 2.6514 0.1053
0.4 0.0562 3.9007 0.0493
0.5 0.0449 2.9941 0.0548
0.6 -0.0040 -0.2805 0.0860
0.7 -0.0683 -5.4239 0.0836
0.8 -0.1101 -11.4644 0.0576
0.9 -0.0929 -17.2091 0.0272

x AB(x) RAB(x) SE(x)
0.1 0.1684 69.4034 0.0959
0.2 0.1628 26.5887 0.1528
0.3 0.0487 4.7244 0.1483
0.4 -0.0728 -5.3114 0.0946
0.5 -0.1134 -7.5604 0.0464
0.6 -0.0437 -3.1871 0.0860
0.7 0.0931 9.0282 0.1053
0.8 0.2039 33.3052 0.0819
0.9 0.1954 80.5164 0.0402

Table 2.7: Left and right tables are statistical results of b1(x) and b2(x) for Figure 2.7,
respectively.
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Figure 2.8: M = 10, α1 = 5e − 5, α2 = 5e − 5. Each of the grey lines (....) of the left
part of the figure denotes a distinct result for a given sample {εk}.
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x AB(x) RAB(x) SE(x)
0.1 -0.0687 -12.7279 0.0765
0.2 -0.0790 -8.2334 0.1096
0.3 -0.0572 -4.5419 0.0891
0.4 -0.0402 -2.7920 0.0435
0.5 -0.0537 -3.5800 0.0588
0.6 -0.0980 -6.8075 0.0871
0.7 -0.1490 -11.8273 0.0846
0.8 -0.1694 -17.6443 0.0596
0.9 -0.1255 -23.2483 0.0296

x AB(x) RAB(x) SE(x)
0.1 0.1926 79.3867 0.1066
0.2 0.2106 34.4018 0.1757
0.3 0.1187 11.5041 0.1784
0.4 0.0178 1.2960 0.1208
0.5 -0.0069 -0.4598 0.0549
0.6 0.0665 4.8565 0.0915
0.7 0.1889 18.3112 0.1157
0.8 0.2704 44.1765 0.0915
0.9 0.2239 92.2680 0.0459

Table 2.8: Left and right tables are statistical results of b1(x) and b2(x) for Figure 2.8,
respectively.

2.4 Concluding Remarks

In this paper we have developed a numerical technique for identifying unknown parame-

ters in a general size-structured population model. A main focus of this chapter is on the

statistical study of the parameter estimation technique. This was done via thousands of

numerical experiments.

Several conclusions can be drawn from our studies. 1) The method discussed above

seems to perform well and produce good confidence intervals for the parameters. 2)

When the infinite dimensional effects of the model and the parameter space are removed,

the resulting numerical and statistical values suggest that the least-squares technique

produces very good unbiased parameter estimates. 3) The type of numerical scheme

used for approximating the infinite-dimensional model as well as the parameter space

may influence the bias in the parameter estimation technique. 4) The commonly used

regularization term is crucial for enforcing compactness and obtaining better estimates.

However, it may also introduce more bias in the estimator.

We note in closing that the system (2.1.1) investigated in this paper is a special case

of the measure dependent aggregate dynamics problems formulated in [6] wherein indi-

vidual (uncoupled) dynamics are not available. Inverse problems for such systems have

been investigated in a number of applications including cellular level HIV modelling [7],
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hysteresis in viscoelastic materials [8, 9], shear waves in biotissue [10], and electromag-

netic interrogation in complex materials [11]. In a more general formulation (currently

under investigation by the authors), one has a probability distribution F of individual

parameters q(x, P ) = q = (g,m, β, C) on an admissible set Q. The system (2.1.1) is

replaced by a continuum of systems for u(x, t; q(x, P )) with the total population P (t; F )

given by

P (t; F ) =

∫

Q

[∫ L

0

u(x, t; q)dx

]
dF (q) =

∫

Q

[∫ L

0

u(x, t; q)dx

]
f(q)dq,

the latter equality holding if F has a density f . The aggregate dynamics for u depend

explicitly on F through the dependence of the individual rate parameters (g,m, β, C) on

the total population P .

If F is a discrete measure with N atoms at qJ of mass fJ , then we have

P (t; F ) =
N∑

J=1

fJ

∫ L

0

u(x, t; qJ)dx.

Moreover, if F is uniformly and discretely distributed (fJ = 1
N

), this becomes

P (t; F ) =
1

N

N∑

J=1

∫ L

0

u(x, t; qJ)dx,

which is simply a scaled (by 1
N

) version of (2.1.2). Of course, even in this simple case,

the system does not decouple. (i.e., individual dynamics are not available). This will

be the case anytime the individual parameters for subpopulations depend on the total

population. It is also clear that inverse problems with such measure dependent dynamics

are a generalized version of the estimation problems discussed in the statistical literature

in the context of hierarchial modelling [36].
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Chapter 3

On a Nonlinear Size-Structured
Phytoplankton-Zooplankton
Aggregation Model

We consider a coupled system of nonlinear size-structured phytoplankton population and

zooplankton population. We develop a comparison principle and construct monotone

sequences to show the existence of the solution. The uniqueness of the solution is also

established.

3.1 Introduction

In this chapter, we consider the following initial boundary value problem that describes

the dynamics of coupled size-structured phytoplankton–zooplankton system

ut + (g1(x, t)u(x, t))x + m1(x, t, ϕu, ϕz)u(x, t) = 1
2

∫ x

0
β(x − y, y)u(x − y, t)u(y, t)dy

−
∫ ∞

0
β(x, y)u(x, t)u(y, t)dy 0 < x < ∞, 0 < t < T

zt + (g2(x, t)z(x, t))x + m2(x, t, ϕu, ϕz)z(x, t) = 0 0 < x < ∞, 0 < t < T

g1(0, t)u(0, t) =
∫ ∞

0
γ1(y, t, ϕu, ϕz)u(y, t)dy 0 < t < T

g2(0, t)z(0, t) =
∫ ∞

0
γ2(y, t, ϕu, ϕz)z(y, t)dy 0 < t < T

u(x, 0) = u0(x) 0 ≤ x < ∞

z(x, 0) = z0(x) 0 ≤ x < ∞,

(3.1.1)



72

where

ϕu =

∫ ∞

0

u(x, t)dx and ϕz =

∫ ∞

0

z(x, t)dx.

Here u(x, t) and z(x, t) are the density of aggregates having size x at time t of phyto-

plankton population and zooplankton population, respectively. The function β(x, y) is

the rate at which particles of size x coagulate with particles of size y. The functions

g1 and g2 denote the growth rate of an aggregate in the phytoplankton population and

zooplankton population, respectively. The functions m1 and m2 denote the mortality

rate of an aggregate in the phytoplankton population and zooplankton population, re-

spectively. The function γ1 and γ2 are the number of single cells that fall off an aggregate

of size x and join the single cell population of phytoplankton population and zooplankton

population, respectively. The first integral term on the right side of (3.1.1) expresses the

rate at which collisions occur to form new particles in the size interval (x, x + dx), while

the second term represents the rate at which such collisions cause these particles to be

lost from the same interval. The third and forth integral term represent the addition

of new born single cells to the single cell phytoplankton population and zooplankton

population,respectively.

There is a growing literature on investigating the aggregation model of phytoplankton

cells. In [2], the inverse problem of identifying the compactly supported coagulation

kernel with g ≡ 0, m ≡ 0 and γ ≡ 0 was studied. In [3] the inverse problem of identifying

parameters in the model discussed in [5] from observed data was investigated. In addition,

four common methods are used in the literature to establish the existence-uniqueness for

its certain case. One is the semigroups of linear operators theoretic approach, which is

used in [9, 10] to deal with the case of a bounded coagulation kernel with g ≡ 0, m ≡ 0

and γ ≡ 0, and is also used in [5] to deal with the case of a bounded domain and a

compactly supported coagulation kernel with m ≡ 0 and γ = γ(y). The second approach
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is evolution operators theory, which is used in [11] to extend those results in [9, 10] to a

time-dependent coagulation kernel. The third approach is finite difference scheme used

in [4]. The last approach is the monotone method, which is used in [1] for the case of

infinite domain for the particle size, γ = γ(y, t) and m ≡ 0.

The goal of this chapter is to extend the results in [1] for a coupled size-structured

phytoplankton–zooplankton system with the parameters m and γ both being depending

on the total population. Techniques in the spirit of those in [1] are used to establish the

comparison principle and obtain the existence of the solution. To our knowledge, results

on the existence and uniqueness for this kind of coupled system with quasilinear case

given in (3.1.1) are not available in the literature.

The remainder of this chapter is organized as follows. In Section 3.2, we define a pair

of coupled upper and lower solutions and establish a comparison principle. In Section 3.3,

we construct two monotone sequences of upper and lower solutions, and then show the

existence of the solution of problem (3.1.1). In Section 3.4, we establish the uniqueness

of the solution, and we also show that this local solution is a global one.

3.2 Comparison Principle

For convenience, we use ‖ ‖∞ to denote the supreme of a function in its domain through-

out this chapter. In order to carry out our programme, the following conditions will be

imposed:

(H1) u0(x) and z0(x) are non-negative function on [0,∞), and u0, z0 ∈ L1(0,∞) ∩

L∞(0,∞).

(H2) β(x, y) is a continuous, non-negative function on [0,∞) × [0,∞) with ‖β‖∞ < ∞.

(H3) mi(x, t, ϕu, ϕz) is a bounded and non-negative function on [0,∞) × [0, T ]. We

further assumed that mi(x, t, ϕu, ϕz) is continuously differentiable with respect to
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ϕu and ϕz, ‖miϕu‖∞ < ∞, and ‖miϕz‖∞ < ∞ for i = 1, 2. We also assumed that

m1ϕu ≥ 0, m1ϕz ≥ 0, m2ϕu ≤ 0 and m2ϕz ≥ 0.

(H4) γi(x, t, ϕu, ϕz) is a bounded and non-negative function on [0,∞)×[0, T ]. We further

assumed that γi(x, t, ϕu, ϕz) is continuously differentiable with respect to ϕu and

ϕz, ‖γiϕu‖∞ < ∞, and ‖γiϕz‖∞ < ∞ for i = 1, 2. We also assumed that γ1ϕu ≤ 0,

γ1ϕz ≤ 0, γ2ϕu ≥ 0 and γ2ϕz ≤ 0.

(H5) gi(x, t) is continuously differentiable on (0,∞) × (0, T ) with ‖g1x‖∞ < ∞ and

‖g2x‖∞ < ∞. Furthermore, gi(x, t) > 0 for (x, t) ∈ [0,∞)×[0, T ] and limx→∞ gi(x, t) =

0 for t ∈ [0, T ].

For simplicity, let DT = (0,∞)×(0, T ) and C1
0,r(DT ) = {ψ ∈ C1(DT ) : there exists a constant

xψ ∈ (0,∞) such that ψ ≡ 0 for x ≥ xψ}. We then introduce the definition of coupled

upper and lower solutions of (3.1.1) as follows:

Definition 3.2.1. A pair of functions (ū(x, t), z̄(x, t)) and (u(x, t), z(x, t)) are called an

upper and lower solution of (3.1.1) on DT , respectively, if all the following hold:

(i) ū, u, z̄, z ∈ L∞((0, T );L1(0,∞)).

(ii) ū(x, 0) ≥ u0(x) ≥ u(x, 0), z̄(x, 0) ≥ z0(x) ≥ z(x, 0) a.e. in (0,∞).

(iii) For every t ∈ (0, T ) and every non-negative ξ, η ∈ C1
0,r(DT ), we have

∫ ∞

0
ū(x, t)ξ(x, t)dx

≥
∫ ∞

0
ū(x, 0)ξ(x, 0)dx +

∫ t

0
ξ(0, s)

∫ ∞

0
γ1(x, s, ϕu, ϕz)ū(x, s)dx ds

+
∫ t

0

∫ ∞

0
[ξs(x, s) + g1(x, s)ξx(x, s)] ū(x, s)dx ds

+1
2

∫ t

0

∫ ∞

0
ξ(x, s)

∫ x

0
β(x − y, y)ū(x − y, s)ū(y, s)dy dx ds

−
∫ t

0

∫ ∞

0
ξ(x, s)

[∫ ∞

0
β(x, y)u(y, s)dy + m1(x, s, ϕu, ϕz)

]
ū(x, s)dx ds,

(3.2.1)



75

∫ ∞

0
u(x, t)ξ(x, t)dx

≤
∫ ∞

0
u(x, 0)ξ(x, 0)dx +

∫ t

0
ξ(0, s)

∫ ∞

0
γ1(x, s, ϕū, ϕz̄)u(x, s)dx ds

+
∫ t

0

∫ ∞

0
[ξs(x, s) + g1(x, s)ξx(x, s)] u(x, s)dx ds

+1
2

∫ t

0

∫ ∞

0
ξ(x, s)

∫ x

0
β(x − y, y)u(x − y, s)u(y, s)dy dx ds

−
∫ t

0

∫ ∞

0
ξ(x, s)

[∫ ∞

0
β(x, y)ū(y, s)dy + m1(x, s, ϕū, ϕz̄)

]
u(x, s)dx ds,

(3.2.2)

∫ ∞

0
z̄(x, t)η(x, t)dx

≥
∫ ∞

0
z̄(x, 0)η(x, 0)dx +

∫ t

0
η(0, s)

∫ ∞

0
γ2(x, s, ϕū, ϕz)z̄(x, s)dx ds

+
∫ t

0

∫ ∞

0
[ηs(x, s) + g2(x, s)ηx(x, s)] z̄(x, s)dx ds

−
∫ t

0

∫ ∞

0
m2(x, s, ϕū, ϕz)z̄(x, s)η(x, s)dx ds,

(3.2.3)

and

∫ ∞

0
z(x, t)η(x, t)dx

≤
∫ ∞

0
z(x, 0)η(x, 0)dx +

∫ t

0
η(0, s)

∫ ∞

0
γ2(x, s, ϕu, ϕz̄)z(x, s)dx ds

+
∫ t

0

∫ ∞

0
[ηs(x, s) + g2(x, s)ηx(x, s)] z(x, s)dx ds

−
∫ t

0

∫ ∞

0
m2(x, s, ϕu, ϕz̄)z(x, s)η(x, s)dx ds.

(3.2.4)

Definition 3.2.2. (u(x, t), z(x, t)) is called a solution of (3.1.1) on DT if (u, z) satisfies

(3.2.1) and (3.2.3) with “≥” replaced by “=”, and (ū, z̄) and (u, z) are both replaced by

(u, z).

Theorem 3.2.1. Suppose that (H1)-(H5) hold. Let (ū, z̄) and (u, z) be the non-negative

upper solution and non-negative lower solution of (3.1.1), respectively. Then ū ≥ u and

z̄ ≥ z a.e. in DT .

Proof. Let v = u−ū and w = z−z̄. Choose non-negative functions ξ and η ∈ C1
0,r((0, n)×

(0, T )). Then v and w satisfy v(x, 0) ≤ 0 and w(x, 0) ≤ 0 a.e. in [0,∞). By (3.2.1) and
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(3.2.2), we find

∫ ∞

0
v(x, t)ξ(x, t)dx ≤

∫ ∞

0
v(x, 0)ξ(x, 0)dx

+
∫ t

0
ξ(0, s)

∫ ∞

0
[γ1(x, s, ϕū, ϕz̄)v(x, s) + (γ1(x, s, ϕū, ϕz̄) − γ1(x, s, ϕu, ϕz))ū(x, s)] dx ds

+
∫ t

0

∫ ∞

0
[ξs(x, s) + g1(x, s)ξx(x, s)] v(x, s)dx ds

+1
2

∫ t

0

∫ ∞

0
ξ(x, s)

∫ x

0
β(x − y, y) [u(x − y, s)v(y, s) + v(x − y, s)ū(y, s)] dy dx ds

−
∫ t

0

∫ ∞

0
ξ(x, s)v(x, s)

∫ ∞

0
β(x, y)ū(y, s)dy dxds

+
∫ t

0

∫ ∞

0
ξ(x, s)ū(x, s)

∫ ∞

0
β(x, y)v(y, s)dy dx ds −

∫ t

0

∫ ∞

0
ξ(x, s)m1(x, s, ϕū, ϕz̄)v(x, s)dx ds

−
∫ t

0

∫ ∞

0
ξ(x, s) [m1(x, s, ϕū, ϕz̄) − m1(x, s, ϕu, ϕz)] ū(x, s)dx ds.

Rewriting some terms in the right side of the above equation, we obtain

1
2

∫ t

0

∫ ∞

0
ξ(x, s)

∫ x

0
β(x − y, y) [u(x − y, s)v(y, s) + v(x − y, s)ū(y, s)] dy dx ds

= 1
2

∫ t

0

∫ ∞

0

∫ ∞

y
ξ(x, s)β(x − y, y) [u(x − y, s)v(y, s) + v(x − y, s)ū(y, s)] dx dy ds

= 1
2

∫ t

0

∫ ∞

0
v(y, s)

∫ ∞

0
ξ(y + z, s)β(z, y)u(z, s)dz dy ds

+1
2

∫ t

0

∫ ∞

0
ū(y, s)

∫ ∞

0
ξ(y + z, s)β(z, y)v(z, s)dz dy ds,

−
∫ t

0

∫ ∞

0
ξ(x, s) [m1(x, s, ϕū, ϕz̄) − m1(x, s, ϕu, ϕz)] ū(x, s)dx ds

= −
∫ t

0

∫ ∞

0
ξ(x, s) [m1ϕu(x, s, θum

, ϕz̄)(ϕū − ϕu) + m1ϕz(x, s, ϕu, θzm
)(ϕz̄ − ϕz)] ū(x, s)dx ds

=
∫ t

0

∫ ∞

0
ū(x, s)ξ(x, s)m1ϕu(x, s, θum

, ϕz̄)
∫ ∞

0
v(y, s)dy dx ds

+
∫ t

0

∫ ∞

0
ū(x, s)ξ(x, s)m1ϕz(x, s, ϕu, θzm

)
∫ ∞

0
w(y, s)dy dx ds,

and

∫ t

0
ξ(0, s)

∫ ∞

0
[γ1(x, s, ϕū, ϕz̄) − γ1(x, s, ϕu, ϕz)] ū(x, s)dx ds

=
∫ t

0
ξ(0, s)

∫ ∞

0

[
γ1ϕu(x, s, θuγ

, ϕz̄)(ϕū − ϕu) + γ1ϕz(x, s, ϕu, θzγ
)(ϕz̄ − ϕz)

]
ū(x, s)dx ds

= −
∫ t

0
ξ(0, s)

∫ ∞

0
γ1ϕu(x, s, θuγ

, ϕz̄)ū(x, s)
∫ ∞

0
v(y, s)dy dx ds

−
∫ t

0
ξ(0, s)

∫ ∞

0
γ1ϕz(x, s, ϕu, θzγ

)ū(x, s)
∫ ∞

0
w(y, s)dy dx ds,
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where θum
and θuγ

are both between ϕu and ϕū, and θzm
θzγ

are both between ϕz and

ϕz̄. Note that ξ(x, 0) ≥ 0, and v(x, 0) ≤ 0 a.e. in (0,∞), we have

∫ ∞

0
v(x, t)ξ(x, t)dx ≤

∫ t

0
ξ(0, s)

∫ ∞

0
γ1(x, s, ϕū, ϕz̄)v(x, s)dx ds

+
∫ t

0

∫ ∞

0
[ξs(x, s) + g1(x, s)ξx(x, s)] v(x, s)dx ds

−
∫ t

0

∫ ∞

0
ξ(x, s)

[∫ ∞

0
β(x, y)ū(y, s)dy + m1(x, s, ϕū, ϕz̄)

]
v(x, s)dx ds

+
∫ t

0

∫ ∞

0
ū(x, s)

∫ ∞

0
ξ(x, s)β(x, y)v(y, s)dy dx ds

+
∫ t

0

∫ ∞

0
ū(x, s)

[
−ξ(0, s)γ1ϕu(x, s, θuγ

, ϕz̄) + ξ(x, s)m1ϕu(x, s, θum
, ϕz̄)

] ∫ ∞

0
v(y, s)dy dx ds

+
∫ t

0

∫ ∞

0
ū(x, s)

[
−ξ(0, s)γ1ϕz(x, s, ϕu, θzγ

) + ξ(x, s)m1ϕz(x, s, ϕu, θzm
)
] ∫ ∞

0
w(y, s)dy dx ds

+1
2

∫ t

0

∫ ∞

0
v(y, s)

∫ ∞

0
ξ(y + z, s)β(z, y)u(z, s)dz dy ds

+1
2

∫ t

0

∫ ∞

0
ū(y, s)

∫ ∞

0
ξ(y + z, s)β(z, y)v(z, s)dz dy ds.

(3.2.5)

By (3.2.3) and (3.2.4), we find

∫ ∞

0
w(x, t)η(x, t)dx ≤

∫ ∞

0
w(x, 0)η(x, 0)dx

+
∫ t

0
η(0, s)

∫ ∞

0
[γ2(x, s, ϕu, ϕz̄)w(x, s) + (γ2(x, s, ϕu, ϕz̄) − γ2(x, s, ϕū, ϕz))z̄(x, s)] dx ds

+
∫ t

0

∫ ∞

0
[ηs(x, s) + g2(x, s)ηx(x, s)] w(x, s)dx ds

−
∫ t

0

∫ ∞

0
η(x, s)m2(x, s, ϕu, ϕz̄)w(x, s)dx ds

−
∫ t

0

∫ ∞

0
η(x, s) [m2(x, s, ϕu, ϕz̄) − m2(x, s, ϕū, ϕz)] z̄(x, s)dx ds.

Note that η(x, 0) ≥ 0, and w(x, 0) ≤ 0 a.e. in (0,∞) , we have

∫ ∞

0
w(x, t)η(x, t)dx ≤

∫ t

0
η(0, s)

∫ ∞

0
γ2(x, s, ϕu, ϕz̄)w(x, s)dx ds

+
∫ t

0

∫ ∞

0
[η(0, s)γ2ϕu(x, s, θ1, ϕ

z̄) − η(x, s)m2ϕu(x, s, θ2, ϕ
z̄)] z̄(x, s)

∫ ∞

0
v(y, s)dy dx ds

+
∫ t

0

∫ ∞

0
[−η(0, s)γ2ϕz(x, s, ϕū, θ3) + η(x, s)m2ϕz(x, s, ϕū, θ4)] z̄(x, s)

∫ ∞

0
w(y, s)dy dx ds

+
∫ t

0

∫ ∞

0
[ηs(x, s) + g2(x, s)ηx(x, s)] w(x, s)dx ds −

∫ t

0

∫ ∞

0
η(x, s)m2(x, s, ϕu, ϕz̄)w(x, s)dx ds,

(3.2.6)

where θ1 and θ2 are both between ϕu and ϕū, and θ3 θ4 are both between ϕz and ϕz̄.

Let ξ(x, t) = eλ1tζ(x, t), where ζ ∈ C1
0,r((0, n) × (0, T )) and λ1 is chosen so that λ1 −
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∫ ∞

0
β(x, y)ū(y, s)dy − m1(x, s, ϕū, ϕz̄) ≥ 0 on DT . Then by (3.2.5), we obtain

eλ1t
∫ ∞

0
v(x, t)ζ(x, t)dx ≤

∫ t

0
eλ1sζ(0, s)

∫ ∞

0
γ1(x, s, ϕū, ϕz̄)v(x, s)dx ds

+
∫ t

0

∫ ∞

0
[ζs(x, s) + g1(x, s)ζx(x, s)] eλ1sv(x, s)dx ds

+
∫ t

0

∫ ∞

0
eλ1sζ(x, s)v(x, s)

[
λ1 −

∫ ∞

0
β(x, y)ū(y, s)dy − m1(x, s, ϕū, ϕz̄)

]
dx ds

+
∫ t

0

∫ ∞

0
eλ1sū(x, s)

∫ ∞

0
ζ(x, s)β(x, y)v(y, s)dy dx ds

+
∫ t

0

∫ ∞

0
eλ1sū(x, s)

[
−ζ(0, s)γ1ϕu(x, s, θuγ

, ϕz̄) + ζ(x, s)m1ϕu(x, s, θum
, ϕz̄)

] ∫ ∞

0
v(y, s)dy dx ds

+
∫ t

0

∫ ∞

0
eλ1sū(x, s)

[
−ζ(0, s)γ1ϕz(x, s, ϕu, θzγ

) + ζ(x, s)m1ϕz(x, s, ϕu, θzm
)
] ∫ ∞

0
w(y, s)dy dx ds

+1
2

∫ t

0

∫ ∞

0
eλ1sv(y, s)

∫ ∞

0
ζ(y + z, s)β(z, y)u(z, s)dz dy ds

+1
2

∫ t

0

∫ ∞

0
eλ1sū(y, s)

∫ ∞

0
ζ(y + z, s)β(z, y)v(z, s)dz dy ds.

(3.2.7)

Let η(x, t) = eλ2tρ(x, t), where ρ ∈ C1
0,r((0, n) × (0, T )) and λ2 is chosen so that λ2 −

m2(x, s, ϕu, ϕz̄) ≥ 0 on DT . Then by (3.2.6), we find

eλ2t
∫ ∞

0
w(x, t)ρ(x, t)dx ≤

∫ t

0
eλ2sρ(0, s)

∫ ∞

0
γ2(x, s, ϕu, ϕz̄)w(x, s)dx ds

+
∫ t

0

∫ ∞

0
[ρ(0, s)γ2ϕu(x, s, θ1, ϕ

z̄) − ρ(x, s)m2ϕu(x, s, θ2, ϕ
z̄)] eλ2sz̄(x, s)

∫ ∞

0
v(y, s)dy dx ds

+
∫ t

0

∫ ∞

0
[−ρ(0, s)γ2ϕz(x, s, ϕū, θ3) + ρ(x, s)m2ϕz(x, s, ϕū, θ4)] e

λ2sz̄(x, s)
∫ ∞

0
w(y, s)dy dx ds

+
∫ t

0

∫ ∞

0
[ρs(x, s) + g2(x, s)ρx(x, s)] eλ2sw(x, s)dx ds

+
∫ t

0

∫ ∞

0
eλ2sρ(x, s)[λ2 − m2(x, s, ϕu, ϕz̄)]w(x, s)dx ds.

(3.2.8)

We now set up two backward problems as follows:

ζs(x, s) + g1(x, s)ζx(x, s) = 0, 0 < s < t, 0 < x < n

ζ(n, s) = 0, 0 < s < t

ζ(x, t) = χ1(x), 0 ≤ x ≤ n,
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and

ρs(x, s) + g2(x, s)ρx(x, s) = 0, 0 < s < t, 0 < x < n

ρ(n, s) = 0, 0 < s < t

ρ(x, t) = χ2(x), 0 ≤ x ≤ n.

Here χi ∈ C∞
0 (0, n) and 0 ≤ χi ≤ n, i = 1, 2. The existence of ζ(x, s) and ρ(x, s) can

be easily shown. Note that the initial and boundary conditions of ζ(x, s) and ρ(x, s),

we have 0 ≤ ζ(x, s) ≤ 1 and 0 ≤ ρ(x, s) ≤ 1. Substituting such a ζ(x, s) and ρ(x, s) in

(3.2.7) and (3.2.8), respectively, we obtain

∫ n

0

v(x, t)χ1(x)dx ≤ τ1

∫ t

0

∫ ∞

0

v(x, s)+dx ds + τ2

∫ t

0

∫ ∞

0

w(x, s)+dx ds, (3.2.9)

and

∫ n

0

w(x, t)χ2(x)dx ≤ τ3

∫ t

0

∫ ∞

0

w(x, s)+dx ds + τ4

∫ t

0

∫ ∞

0

v(x, s)+dx ds, (3.2.10)

where

τ1 = sup
{
γ1(x, s, ϕū, ϕz̄) +

[
λ1 −

∫ ∞

0
β(x, y)ū(y, s)dy − m1(x, s, ϕū, ϕz̄)

]

+1
2

∫ ∞

0
β(z, x)u(z, s)dz +

(
3
2
‖β‖∞ + ‖m1ϕu‖∞ + ‖γ1ϕu‖∞

) ∫ ∞

0
ū(y, s)dy

}
,

τ2 = (‖γ1ϕz‖∞ + ‖m1ϕz‖∞) sup

{∫ ∞

0

ū(x, s)dx

}
,

τ3 = sup
{
γ2(x, s, ϕu, ϕz̄) + [λ2 − m2(x, s, ϕu, ϕz̄)] + (‖γ2ϕz‖∞ + ‖m2ϕz‖∞)

∫ ∞

0
z̄(y, s)dy

}
,

and

τ4 = (‖γ2ϕu‖∞ + ‖m2ϕu‖∞) sup

{∫ ∞

0

z̄(x, s)dx

}
.
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Since (3.2.9) holds for every χ1, we can choose a sequence {χ1
k} on (0, n) converging to

χ1 =





1, if w(x, t) > 0,

0, otherwise.

Hence, by (3.2.9) we have

∫ n

0

v(x, t)+dx ≤ τ1

∫ t

0

∫ ∞

0

v(x, s)+dx ds + τ2

∫ t

0

∫ ∞

0

w(x, s)+dx ds. (3.2.11)

In the same fashion, by (3.2.10) we have

∫ n

0

w(x, t)+dx ≤ τ3

∫ t

0

∫ ∞

0

w(x, s)+dx ds + τ4

∫ t

0

∫ ∞

0

v(x, s)+dx ds. (3.2.12)

Note that τ1, τ2, τ3 and τ4 are independent of n, by letting n → ∞ in (3.2.11) and

(3.2.12), respectively, we obtain

∫ ∞

0

v(x, t)+dx ≤ τ1

∫ t

0

∫ ∞

0

v(x, s)+dx ds + τ2

∫ t

0

∫ ∞

0

w(x, s)+dx ds,

and ∫ ∞

0

w(x, t)+dx ≤ τ3

∫ t

0

∫ ∞

0

w(x, s)+dx ds + τ4

∫ t

0

∫ ∞

0

v(x, s)+dx ds.

Let τ = max{τ1, τ2, τ3, τ4}, then we get

∫ ∞

0

(v(x, t)+ + w(x, t)+)dx ≤ 2τ

∫ t

0

∫ ∞

0

(v(x, s)+ + w(x, s)+)dx ds.

By the Gronwall’s inequality, we obtain

∫ ∞

0

(v(x, t)+ + w(x, t)+)dx = 0,

which implies the estimates.
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Remark 3.2.1. From the proof of Theorem 3.2.1, it easily follows that for any function

φ ∈ L∞((0, T );L1(0,∞)), if φ(x, 0) ≤ 0 a.e. in (0,∞), and the following inequality holds

for every non-negative ξ ∈ C1
0,r(DT )

∫ ∞

0
φ(x, t)ξ(x, t)dx ≤

∫ ∞

0
φ(x, 0)ξ(x, 0)dx +

∫ t

0
ξ(0, s)

∫ ∞

0
A(x, s)φ(x, s)dx ds

+
∫ t

0

∫ ∞

0
[ξs(x, s) + g(x, s)ξx(x, s)]φ(x, s)dx ds +

∫ t

0

∫ ∞

0
ξ(x, s)B(x, s)φ(x, s)dx ds

+
∫ t

0

∫ ∞

0
φ(x, s)

∫ ∞

0
ξ(x + y, s)C(x, y, s)dy dx ds,

(3.2.13)

with A,B ∈ L∞(DT ),
∫ ∞

0
C(x, y, t)dy ∈ L∞(DT ), and A,C ≥ 0. Then we have φ(x, t) ≤ 0

a.e. in DT .

3.3 Existence Of the Solution

We begin this section by constructing monotone sequences of upper and lower solutions.

Suppose that (ū0, z̄0) and (u0, z0) are a pair of upper and lower solutions of (3.1.1), then

by Theorem 3.2.1 we see that u0(x, t) ≤ ū0(x, t) and z0(x, t) ≤ z̄0(x, t). We then set up

four sequences {uk}∞k=0, {ūk}∞k=0, {zk}∞k=0 and {z̄k}∞k=0 by the following procedure:

For k = 1, 2, . . . , let uk and ūk satisfy the system

uk
t + (g1u

k)x + m1(x, t, ϕūk−1
, ϕz̄k−1

)uk

= 1
2

∫ x

0
β(x − y, y)uk−1(x − y, t)uk−1(y, t)dy − uk(x, t)

∫ ∞

0
β(x, y)ūk−1(y, t)dy

g1(0, t)u
k(0, t) =

∫ ∞

0
γ1(y, t, ϕūk−1

, ϕz̄k−1
)uk−1(y, t)dy

uk(x, 0) = u0(x),

(3.3.1)
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and

ūk
t + (g1ū

k)x + m1(x, t, ϕuk−1
, ϕzk−1

)ūk

= 1
2

∫ x

0
β(x − y, y)ūk−1(x − y, t)ūk−1(y, t)dy − ūk(x, t)

∫ ∞

0
β(x, y)uk−1(y, t)dy

g1(0, t)ū
k(0, t) =

∫ ∞

0
γ1(y, t, ϕuk−1

, ϕzk−1
)ūk−1(y, t)dy

ūk(x, 0) = u0(x).

(3.3.2)

For k = 1, 2, . . . , let zk and z̄k satisfy the system

zk
t + (g2z

k)x + m2(x, t, ϕuk−1
, ϕz̄k−1

)zk = 0

g2(0, t)z
k(0, t) =

∫ ∞

0
γ2(y, t, ϕuk−1

, ϕz̄k−1
)zk−1(y, t)dy

zk(x, 0) = z0(x),

(3.3.3)

and

z̄k
t + (g2z̄

k)x + m2(x, t, ϕūk−1
, ϕzk−1

)z̄k = 0

g2(0, t)z̄
k(0, t) =

∫ ∞

0
γ2(y, t, ϕūk−1

, ϕzk−1
)z̄k−1(y, t)dy

z̄k(x, 0) = z0(x).

(3.3.4)

The existence of solution to problems (3.3.1)–(3.3.4) follows from the fact that (3.3.1)–

(3.3.4) are all linear problems with local boundary conditions.

We first show that

u0 ≤ u1, ū1 ≤ ū0, z0 ≤ z1, and z̄1 ≤ z̄0 a.e in DT . (3.3.5)

Let v(x, t) = u0(x, t) − u1(x, t) and w(x, t) = z0(x, t) − z1(x, t), then by (3.3.1), (3.3.3)

and the fact that (u0(x, t), z0(x, t)) is the lower solution of (3.1.1), we obtain

∫ ∞

0
v(x, t)ξ(x, t)dx

≤
∫ ∞

0
v(x, 0)ξ(x, 0)dx +

∫ t

0

∫ ∞

0
[ξs(x, s) + g1(x, s)ξx(x, s)] v(x, s)dx ds

−
∫ t

0

∫ ∞

0
v(x, s)ξ(x, s)

[∫ ∞

0
β(x, y)ū0(y, s)dy + m1(x, s, ϕū0

, ϕz̄0
)
]
dx ds,
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and

∫ ∞

0
w(x, t)η(x, t)dx

≤
∫ ∞

0
w(x, 0)η(x, 0)dx +

∫ t

0

∫ ∞

0
[ηs(x, s) + g2(x, s)ηx(x, s)] w(x, s)dx ds

−
∫ t

0

∫ ∞

0
w(x, s)η(x, s)m2(x, s, ϕu0

, ϕz̄0
)dx ds.

Then v(x, t) satisfies (3.2.13) with A(x, t) = 0, B(x, t) = −
∫ ∞

0
β(x, y)ū0(y, s)dy −

m1(x, s, ϕū0
, ϕz̄0

) and C(x, y, t) = 0, and w(x, t) satisfies (3.2.13) with A(x, t) = 0,

B(x, t) = −m2(x, s, ϕu0
, ϕz̄0

) and C(x, y, t) = 0. Thus, by Remark 3.2.1 we obtain

that v(x, t) ≤ 0 and w(x, t) ≤ 0 a.e in DT , i.e., u0 ≤ u1 and z0 ≤ z1 a.e in DT . In a

similar manner, we can show that ū1 ≤ ū0 and z̄1 ≤ z̄0 a.e in DT .

We then show that (u1, z1) and (ū1, z̄1) are the lower and upper solutions of (3.1.1),

respectively. By (3.3.5), m1ϕu ≥ 0 and m1ϕz ≥ 0, we find

1
2

∫ x

0
β(x − y, y)u0(x − y, t)u0(y, t)dy − u1(x, t)

∫ ∞

0
β(x, y)ū0(y, t)dy − m1(x, t, ϕū0

, ϕz̄0
)u1

≤ 1
2

∫ x

0
β(x − y, y)u1(x − y, t)u1(y, t)dy − u1(x, t)

∫ ∞

0
β(x, y)ū1(y, t)dy − m1(x, t, ϕū1

, ϕz̄1
)u1,

and

1
2

∫ x

0
β(x − y, y)ū0(x − y, t)ū0(y, t)dy − ū1(x, t)

∫ ∞

0
β(x, y)u0(y, t)dy − m1(x, t, ϕu0

, ϕz0
)ū1

≥ 1
2

∫ x

0
β(x − y, y)ū1(x − y, t)ū1(y, t)dy − ū1(x, t)

∫ ∞

0
β(x, y)u1(y, t)dy − m1(x, t, ϕu1

, ϕz1
)ū1.

By (3.3.5), γ1ϕu ≤ 0 and γ1ϕz ≤ 0, we find

∫ ∞

0

γ1(y, t, ϕū0

, ϕz̄0

)u0(y, t)dy ≤
∫ ∞

0

γ1(y, t, ϕū1

, ϕz̄1

)u1(y, t)dy,

and ∫ ∞

0

γ1(y, t, ϕu0

, ϕz0

)ū0(y, t)dy ≥
∫ ∞

0

γ1(y, t, ϕu1

, ϕz1

)ū1(y, t)dy.
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By (3.3.5), m2ϕu ≤ 0 and m2ϕz ≥ 0, we obtain

−m2(x, t, ϕu0

, ϕz̄0

)z1 ≤ −m2(x, t, ϕu1

, ϕz̄1

)z1,

and

−m2(x, t, ϕū0

, ϕz0

)z̄1 ≥ −m2(x, t, ϕū1

, ϕz1

)z̄1.

By (3.3.5), γ2ϕu ≥ 0 and γ2ϕz ≤ 0, we obtain

∫ ∞

0

γ2(y, t, ϕu0

, ϕz̄0

)z0(y, t)dy ≤
∫ ∞

0

γ2(y, t, ϕu1

, ϕz̄1

)z1(y, t)dy,

and ∫ ∞

0

γ2(y, t, ϕū0

, ϕz0

)z̄0(y, t)dy ≥
∫ ∞

0

γ2(y, t, ϕū1

, ϕz1

)z̄1(y, t)dy.

Thus, (u1, z1) and (ū1, z̄1) are the lower and upper solutions of (3.1.1), respectively.

We then assumed that for some k > 1, (uk, zk) and (ūk, z̄k) are the lower and upper

solutions of (3.1.1), respectively. Proceeding analogously, we can show that

uk ≤ uk+1, ūk+1 ≤ ūk, zk ≤ zk+1, and z̄k+1 ≤ z̄k a.e in DT .

and then by the above inequalities we can claim that (uk+1, zk+1) and (ūk+1, z̄k+1) are

the lower and upper solutions of (3.1.1), respectively. Thus, we obtain four monotone

sequences

u0 ≤ u1 ≤ · · · ≤ uk ≤ ūk ≤ · · · ≤ ū1 ≤ ū0, a.e. in DT ,

z0 ≤ z1 ≤ · · · ≤ zk ≤ z̄k ≤ · · · ≤ z̄1 ≤ z̄0, a.e. in DT ,

for k = 0, 1, 2, . . . . By the monotonicity of the sequences {uk}∞k=0, {ūk}∞k=0, {zk}∞k=0 and

{z̄k}∞k=0, we know that there exist functions u, ū, z and z̄ such that uk → u, ūk → ū,

zk → z, z̄k → z̄ pointwise in DT . Clearly, u ≤ ū and z ≤ ū a.e. in DT . By the dominant
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convergence theorem, we know that (ū, z̄) and (u, z) are the lower solution and upper

solution of (3.1.1), respectively. Hence by Theorem 3.2.1, we have ū ≤ u and z̄ ≤ z a.e.

in DT . Thus, ū = u, z̄ = z a.e. in DT . Let u = ū and z = z̄, then (u(x, t), z(x, t)) is the

solution of (3.1.1).

Remark 3.3.1. As an example, for a large class of initial data such as u0(x) = O(e−x)

and z0(x) = O(e−x) as x → ∞, we can construct a pair of non-negative lower and upper

solutions of (3.1.1) as follows: let (u0(x, t), z0(x, t)) = (0, 0) and (ū0(x, t), z̄0(x, t)) =
(

c1eb1t

1+a2
1x2 ,

c2eb2t

1+a2
2x2

)
with ai, bi, ci positive constants, i = 1, 2. For every non-negative ξ ∈

C1
0,r(DT ), we find

∫ ∞

0
ū0(x, 0)ξ(x, 0)dx +

∫ t

0
ξ(0, s)

∫ ∞

0
γ1(x, s, ϕu0

, ϕz0
)ū0(x, s)dx ds

+
∫ t

0

∫ ∞

0
[ξs(x, s) + g1(x, s)ξx(x, s)] ū0(x, s)dx ds

+1
2

∫ t

0

∫ ∞

0
ξ(x, s)

∫ x

0
β(x − y, y)ū0(x − y, s)ū0(y, s)dy dx ds

−
∫ t

0

∫ ∞

0
ξ(x, s)

[∫ ∞

0
β(x, y)u0(y, s)dy + m1(x, s, ϕu0

, ϕz0
)
]
ū0(x, s)dx ds

=
∫ ∞

0
ū0(x, 0)ξ(x, 0)dx +

∫ t

0
ξ(0, s)

∫ ∞

0
γ1(x, s, 0, 0)ū0(x, s)dx ds

−
∫ t

0
g1(0, s)ū

0(0, s)ξ(0, s)ds −
∫ t

0

∫ ∞

0
ξ(x, s)ū0(x, s)

(
g1

x(x, s) − g1(x, s)
2a2

1x

1+a2
1x2

)
dx ds

+
∫ ∞

0

(
ū0(x, t)ξ(x, t) − ū0(x, 0)ξ(x, 0) −

∫ t

0
b1ξ(x, s)ū0(x, s)ds

)
dx

+1
2

∫ t

0

∫ ∞

0
ξ(x, s)

∫ x

0
β(x − y, y)ū0(x − y, s)ū0(y, s)dy dx ds

−
∫ t

0

∫ ∞

0
ξ(x, s)m1(x, s, 0, 0)ū0(x, s)dx ds

≤
∫ ∞

0
ū0(x, t)ξ(x, t)dx +

∫ t

0
ξ(0, s)

[
−g1(0, s)ū

0(0, s) +
∫ ∞

0
γ1(x, s, 0, 0)ū0(x, s)dx

]
ds

+
∫ t

0

∫ ∞

0
ξ(x, s)ū0(x, s) [a1g1(x, s) − g1

x(x, s) − b1 − m1(x, s, 0, 0)] dx ds

+1
2

∫ t

0

∫ ∞

0
ξ(x, s)

∫ x

0
β(x − y, y)ū0(x − y, s)ū0(y, s)dy dx ds.

(3.3.6)

First we choose a1 so large that a1 ≥ π‖γ1‖∞
2mins∈[0,1] g1(0,s)

. Note that
∫ ∞

0
1

1+a2
1x2 dx = π

2a1
, we
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obtain

−g1(0, s)ū
0(0, s) +

∫ ∞

0
γ1(x, s, 0, 0)ū0(x, s)dx

≤ c1e
bs‖γ1‖∞

∫ ∞

0
1

1+a2
1x2 dx − c1e

bsg1(0, s) = c1e
bs

(
π‖γ1‖∞

2a1
− g1(0, s)

)
≤ 0.

(3.3.7)

Fix this a1 and choose c1 so large that c1
1+a1x2 ≥ u0(x). Note that

∫ x

0

1

[1 + a2
1(x − y)2](1 + a2

1y
2)

dy =
2

a2
1x

[
a1x tan−1(a1x) + log(1 + a2

1x
2)

4 + a2
1x

2

]
≤ 2(1 + π)

a1(1 + a2
1x

2)
,

we have
1
2

∫ t

0

∫ ∞

0
ξ(x, s)

∫ x

0
β(x − y, y)ū0(x − y, s)ū0(y, s)dy dx ds

≤ 3c1
a1

(1 + π)‖β‖∞
∫ t

0

∫ ∞

0
ξ(x, s)ū0(x, s)dx ds.

We then choose b1 sufficiently large that b1 ≥ 3c1
a1

(1+π)‖β‖∞+a1‖g1‖∞+‖g1x‖∞. Hence,

we obtain

∫ t

0

∫ ∞

0
ξ(x, s)ū0(x, s) [a1g1(x, s) − g1x(x, s) − b1 − m1(x, s, 0, 0)] dx ds

+1
2

∫ t

0

∫ ∞

0
ξ(x, s)

∫ x

0
β(x − y, y)ū0(x − y, s)ū0(y, s)dy dx ds

≤
∫ t

0

∫ ∞

0
ξ(x, s)ū0(x, s)

[
a1g1(x, s) − g1x(x, s) − b1 − m1(x, s, 0, 0) + 3c1

a1
(1 + π)‖β‖∞

]
dx ds

≤ 0.

(3.3.8)

Thus, by (3.3.6)–(3.3.8), we see that (u0(x, t), z0(x, t)) and (ū0(x, t), z̄0(x, t)) satisfy

(3.2.1).

In the same fashion, we have

∫ ∞

0
z̄0(x, 0)ξ(x, 0)dx +

∫ t

0
ξ(0, s)

∫ ∞

0
γ2(x, s, ϕū0

, ϕz0
)z̄0(x, s)dx ds

+
∫ t

0

∫ ∞

0
[ξs(x, s) + g2(x, s)ξx(x, s)] z̄0(x, s)dx ds

−
∫ t

0

∫ ∞

0
ξ(x, s)m2(x, s, ϕū0

, ϕz0
)z̄0(x, s)dx ds

≤
∫ ∞

0
z̄0(x, t)ξ(x, t)dx +

∫ t

0
ξ(0, s)

[
−g2(0, s)z̄

0(0, s) +
∫ ∞

0
γ2(x, s, ϕū0

, 0)z̄0(x, s)dx
]
ds

+
∫ t

0

∫ ∞

0
ξ(x, s)z̄0(x, s) [a2g2(x, s) − g2x(x, s) − b2] dx ds.

(3.3.9)
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First we choose a2 so large that a2 ≥ π‖γ2‖∞
2 mins∈[0,1] g2(0,s)

. Then we have

−g2(0, s)z̄
0(0, s) +

∫ ∞

0

γ2(ū
0, 0, x, s)z̄0(x, s)dx ≤ 0. (3.3.10)

Fix this a2 and choose c2 so large that c2
1+a2x2 ≥ z0(x). We then choose b2 sufficiently

large that b2 ≥ a2‖g2‖∞ + ‖g2x‖∞. Then we have

∫ t

0

∫ ∞

0

ξ(x, s)z̄0(x, s) [a2g2(x, s) − g2x(x, s) − b2] dx ds ≤ 0. (3.3.11)

Thus, by (3.3.9)–(3.3.11), we see that (u0(x, t), z0(x, t)) and (ū0(x, t), z̄0(x, t)) satisfy

(3.2.3).

Therefore, (u0(x, t), z0(x, t)) and (ū0(x, t), z̄0(x, t)) is a pair of lower and upper solu-

tion of (3.1.1) on DT with T = min{1, 1/b}.

3.4 Uniqueness Of the Solution

In order to show the uniqueness, we give a new definition of the solution of (3.1.1).

Definition 3.4.1. A pair of non-negative functions (u(x, t), z(x, t)) is called a solution

of (3.1.1) on DT if all the following hold:

(i) u, z ∈ L∞((0, T );L1(0,∞)).

(ii) For every t ∈ (0, T ) and every ξ, η ∈ C1
0,r(DT ), we have

∫ ∞

0
u(x, t)ξ(x, t)dx

=
∫ ∞

0
u(x, 0)ξ(x, 0)dx +

∫ t

0
ξ(0, s)

∫ ∞

0
γ1(x, s, ϕu, ϕz)u(x, s)dx ds

+
∫ t

0

∫ ∞

0
[ξs(x, s) + g1(x, s)ξx(x, s)] u(x, s)dx ds

+1
2

∫ t

0

∫ ∞

0
ξ(x, s)

∫ x

0
β(x − y, y)u(x − y, s)u(y, s)dy dx ds

−
∫ t

0

∫ ∞

0
ξ(x, s)

[∫ ∞

0
β(x, y)u(y, s)dy + m1(x, s, ϕu, ϕz)

]
u(x, s)dx ds,

(3.4.1)
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and

∫ ∞

0
z(x, t)η(x, t)dx

=
∫ ∞

0
z(x, 0)η(x, 0)dx +

∫ t

0
η(0, s)

∫ ∞

0
γ2(x, s, ϕu, ϕz)z(x, s)dx ds

+
∫ t

0

∫ ∞

0
[ηs(x, s) + g2(x, s)ηx(x, s)] z(x, s)dx ds

−
∫ t

0

∫ ∞

0
m2(x, s, ϕu, ϕz)z(x, s)η(x, s)dx ds.

(3.4.2)

We can easily verify that this definition is equivalent to Definition 3.2.2.

Theorem 3.4.1. Suppose that (u1, z1) and (u2, z2) are both the solutions of (3.1.1), then

u1 ≡ u2 and z1 ≡ z2.

Proof. Let v = u1 − u2 and w = z1 − z2. Choose ξ and η ∈ C1
0,r((0, n)× (0, T )). Then v

and w satisfy v(x, 0) = 0 and w(x, 0) = 0 in [0,∞). By (3.2.1) and (3.2.2), we find

∫ ∞

0
v(x, t)ξ(x, t)dx

=
∫ t

0
ξ(0, s)

∫ ∞

0
γ1(x, s, ϕu1

, ϕz1
)v(x, s)dx ds +

∫ t

0

∫ ∞

0
[ξs(x, s) + g1(x, s)ξx(x, s)] v(x, s)dx ds

−
∫ t

0

∫ ∞

0
ξ(x, s)

[∫ ∞

0
β(x, y)u1(y, s)dy + m1(x, s, ϕu1

, ϕz1
)
]
v(x, s)dx ds

−
∫ t

0

∫ ∞

0
u2(x, s)

∫ ∞

0
ξ(x, s)β(x, y)v(y, s)dy dx ds

+
∫ t

0

∫ ∞

0
u2(x, s)

[
ξ(0, s)γ1ϕu(x, s, θuγ

, ϕz1
) − ξ(x, s)m1ϕu(x, s, θum

, ϕz1
)
] ∫ ∞

0
v(y, s)dy dx ds

+
∫ t

0

∫ ∞

0
u2(x, s)

[
ξ(0, s)γ1ϕz(x, s, ϕu2

, θzγ
) − ξ(x, s)m1ϕz(x, s, ϕu2

, θzm
)
] ∫ ∞

0
w(y, s)dy dx ds

+1
2

∫ t

0

∫ ∞

0
v(y, s)

∫ ∞

0
ξ(y + z, s)β(z, y)u1(z, s)dz dy ds

+1
2

∫ t

0

∫ ∞

0
u2(y, s)

∫ ∞

0
ξ(y + z, s)β(z, y)v(z, s)dz dy ds,

(3.4.3)

and

∫ ∞

0
w(x, t)η(x, t)dx =

∫ t

0
η(0, s)

∫ ∞

0
γ2(x, s, ϕu1

, ϕz1
)w(x, s)dx ds

+
∫ t

0

∫ ∞

0

[
η(0, s)γ2ϕu(x, s, θ1, ϕ

z1
) − η(x, s)m2ϕu(x, s, θ2, ϕ

z1
)
]
z2(x, s)

∫ ∞

0
v(y, s)dy dx ds

+
∫ t

0

∫ ∞

0

[
η(0, s)γ2ϕz(x, s, ϕu2

, θ3) − η(x, s)m2ϕz(x, s, ϕu2
, θ4)

]
z2(x, s)

∫ ∞

0
w(y, s)dy dx ds

+
∫ t

0

∫ ∞

0

[
ηs(x, s) + g2(x, s)ηx(x, s) − η(x, s)m2(x, s, ϕu1

, ϕz1
)
]
w(x, s)dx ds,

(3.4.4)
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where θ1 and θ2 are both between ϕu1
and ϕu2

, and θ3 and θ4 are both between ϕz1
and

ϕz2
. Let ξ(x, t) = eλ1tζ(x, t), where ζ ∈ C1

0,r((0, n) × (0, T )). Then by (3.4.3), we obtain

eλ1t
∫ ∞

0
v(x, t)ζ(x, t)dx =

∫ t

0
eλ1sζ(0, s)

∫ ∞

0
γ1(x, s, ϕu1

, ϕz1
)v(x, s)dx ds

+
∫ t

0

∫ ∞

0
[ζs(x, s) + g1(x, s)ζx(x, s)] eλ1sv(x, s)dx ds

+
∫ t

0

∫ ∞

0
eλ1sζ(x, s)v(x, s)

[
λ1 −

∫ ∞

0
β(x, y)u1(y, s)dy − m1(x, s, ϕu1

, ϕz1
)
]
dx ds

−
∫ t

0

∫ ∞

0
eλ1su2(x, s)

∫ ∞

0
ζ(x, s)β(x, y)v(y, s)dy dx ds

+
∫ t

0

∫ ∞

0

[
ζ(0, s)γ1ϕu(x, s, θuγ

, ϕz1
) − ζ(x, s)m1ϕu(x, s, θum

, ϕz1
)
]
eλ1su2(x, s)

∫ ∞

0
v(y, s)dy dx ds

+
∫ t

0

∫ ∞

0

[
ζ(0, s)γ1ϕz(x, s, ϕu2

, θzγ
) − ζ(x, s)m1ϕz(x, s, ϕu2

, θzm
)
]
eλ1su2(x, s)

∫ ∞

0
w(y, s)dy dx ds

+1
2

∫ t

0

∫ ∞

0
eλ1sv(y, s)

∫ ∞

0
ζ(y + z, s)β(z, y)u1(z, s)dz dy ds

+1
2

∫ t

0

∫ ∞

0
eλ1su2(y, s)

∫ ∞

0
ζ(y + z, s)β(z, y)v(z, s)dz dy ds.

(3.4.5)

Let η(x, t) = eλ2tρ(x, t), where ρ ∈ C1
0,r((0, n) × (0, T )). Then by (3.4.4), we find

eλ2t
∫ ∞

0
w(x, t)ρ(x, t)dx =

∫ t

0
eλ2sρ(0, s)

∫ ∞

0
γ2(x, s, ϕu1

, ϕz1
)w(x, s)dx ds

+
∫ t

0

∫ ∞

0

[
ρ(0, s)γ2ϕu(x, s, θ1, ϕ

z1
) − ρ(x, s)m2ϕu(x, s, θ2, ϕ

z1
)
]
eλ2sz2(x, s)

∫ ∞

0
v(y, s)dy dx ds

+
∫ t

0

∫ ∞

0

[
ρ(0, s)γ2ϕz(x, s, ϕu2

, θ3) − ρ(x, s)m2ϕz(x, s, ϕu2
, θ4)

]
eλ2sz2(x, s)

∫ ∞

0
w(y, s)dy dx ds

+
∫ t

0

∫ ∞

0

[
ρs(x, s) + g2(x, s)ρx(x, s) + ρ(x, s)(λ2 − m2(x, s, ϕu1

, ϕz1
))

]
eλ2sw(x, s)dx ds.

(3.4.6)

We now set up two backward problems as follows:

ζs(x, s) + g1(x, s)ζx(x, s) = 0, 0 < s < t, 0 < x < n

ζ(n, s) = 0, 0 < s < t

ζ(x, t) = χ1(x), 0 ≤ x ≤ n,

and

ρs(x, s) + g2(x, s)ρx(x, s) = 0, 0 < s < t, 0 < x < n

ρ(n, s) = 0, 0 < s < t

ρ(x, t) = χ2(x), 0 ≤ x ≤ n,
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where χ1, χ2 ∈ C∞
0 (0, n) and −1 ≤ χ1, χ2 ≤ 1. The existence of ζ(x, s) and ρ(x, s) can

be easily shown. Note that the initial and boundary condition of ζ(x, s) and ρ(x, s), we

have −1 ≤ ζ(x, s) ≤ 1 and −1 ≤ ρ(x, s) ≤ 1. Substituting such a ζ(x, s) and ρ(x, s) in

(3.4.5) and (3.4.6), respectively, we obtain

∫ n

0

v(x, t)χ1(x)dx ≤ µ1

∫ t

0

∫ ∞

0

|v(x, s)|dx ds + µ2

∫ t

0

∫ ∞

0

|w(x, s)|dx ds, (3.4.7)

and

∫ n

0

w(x, t)χ2(x)dx ≤ µ3

∫ t

0

∫ ∞

0

|w(x, s)|dx ds + µ4

∫ t

0

∫ ∞

0

|v(x, s)|dx ds, (3.4.8)

where

µ1 = sup
{

γ1(x, s, ϕu1
, ϕz1

) +
[
λ1 −

∫ ∞

0
β(x, y)u1(y, s)dy − m1(x, s, ϕu1

, ϕz1
)
]

+1
2

∫ ∞

0
β(z, x)u1(z, s)dz +

(
3
2
‖β‖∞ + ‖m1ϕu‖∞ + ‖γ1ϕu‖∞

) ∫ ∞

0
u2(y, s)dy

}
,

µ2 = (‖γ1ϕz‖∞ + ‖m1ϕz‖∞) sup

{∫ ∞

0

u2(x, s)dx

}
,

µ3 = sup
{

γ2(x, s, ϕu1
, ϕz1

) + [λ2 − m2(x, s, ϕu1
, ϕz1

)] + (‖m2ϕz‖∞ + ‖γ2ϕz‖∞)
∫ ∞

0
z2(y, s)dy

}
,

and

µ4 = (‖γ2ϕu‖∞ + ‖m2ϕu‖∞) sup

{∫ ∞

0

z2(x, s)dx

}

Since (3.4.7) holds for every χ1, we can choose a sequence {χ1
k} on (0, n) converging to

χ1 =





1, if w(x, t) > 0,

0, if w(x, t) = 0,

−1, if w(x, t) < 0.
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Hence, by (3.4.7) we have

∫ n

0

|v(x, t)|dx ≤ µ1

∫ t

0

∫ ∞

0

|v(x, s)|dx ds + µ2

∫ t

0

∫ ∞

0

|w(x, s)|dx ds. (3.4.9)

In the same fashion, by (3.4.8) we have

∫ n

0

|w(x, t)|dx ≤ µ3

∫ t

0

∫ ∞

0

|w(x, s)|dx ds + µ4

∫ t

0

∫ ∞

0

|v(x, s)|dx ds. (3.4.10)

Note that µ1, µ2, µ3 and µ4 are independent of n, by letting n → ∞ in (3.4.9) and

(3.4.10), respectively, we obtain

∫ ∞

0

|v(x, t)|dx ≤ µ1

∫ t

0

∫ ∞

0

|v(x, s)|dx ds + µ2

∫ t

0

∫ ∞

0

|w(x, s)|dx ds,

and ∫ ∞

0

|w(x, t)|dx ≤ µ3

∫ t

0

∫ ∞

0

|w(x, s)|dx ds + µ4

∫ t

0

∫ ∞

0

|v(x, s)|dx ds.

Let µ = max{µ1, µ2, µ3, µ4}, then we get

∫ ∞

0

(|v(x, t)| + |w(x, t)|)dx ≤ 2µ

∫ t

0

∫ ∞

0

(|v(x, s)| + |w(x, s)|)dx ds.

By the Gronwall’s inequality, we obtain

∫ ∞

0

(|v(x, t)| + |w(x, t)|)dx = 0,

which implies the estimates.

Theorem 3.4.2. Suppose that (H1)-(H5) hold. Furthermore, suppose that (u0(x, t), z0(x, t))

and (ū0(x, t), z̄0(x, t)) are non-negative lower and non-negative upper solution of (3.1.1),

respectively. Then there exist monotone sequences {uk(x, t), zk(x, t)} and {ūk(x, t), z̄k(x, t)}

which converge to the unique solution of (3.1.1).
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We now show that the solution of (3.1.1) possesses the following property.

Theorem 3.4.3. Suppose that (H1)-(H5) hold. Then for the solution (u(x, t), z(x, t)) of

(3.1.1), ϕu(t) and ϕz(t) are both continuous in the existence interval.

Proof. To show ϕu(t) are continuous on [0, t], it suffices to show that

∫ ∞

0
u(x, t)dx =

∫ ∞

0
u(x, 0)dx +

∫ t

0

∫ ∞

0
γ1(x, s, ϕu, ϕz)u(x, s)dx ds

+1
2

∫ t

0

∫ ∞

0

∫ x

0
β(x − y, y)u(x − y, s)u(y, s)dy dx ds

−
∫ t

0

∫ ∞

0

[∫ ∞

0
β(x, y)u(y, s)dy + m1(x, s, ϕu, ϕz)

]
u(x, s)dx ds.

(3.4.11)

Let ξ(x, t) = ζ(x), where ζ(x) = 1 for 0 ≤ x ≤ n, ζ(x) = 0 for n + 2 ≤ x < ∞ and

−1 ≤ ζ ′ ≤ 0 for n ≤ x ≤ n + 2. By the definition of solution of (3.1.1) we have that

∣∣∣
∫ ∞

0
u(x, t)dx −

∫ ∞

0
u(x, 0)dx −

∫ t

0

∫ ∞

0
γ1(x, s, ϕu, ϕz)u(x, s)dx ds

−1
2

∫ t

0

∫ ∞

0

∫ x

0
β(x − y, y)u(x − y, s)u(y, s)dy dx ds

+
∫ t

0

∫ ∞

0

[∫ ∞

0
β(x, y)u(y, s)dy + m1(x, s, ϕu, ϕz)

]
u(x, s)dx ds

∣∣∣

=
∣∣∣
∫ ∞

n
(u(x, t) − u(x, 0))(1 − ζ(x))dx +

∫ t

0

∫ ∞

n
g1(x, s)ζx(x)u(x, s)dx ds

+1
2

∫ t

0

∫ ∞

n
(ζ(x) − 1)

∫ x

0
β(x − y, y)u(x − y, s)u(y, s)dy dx ds

+
∫ t

0

∫ ∞

n
u(x, s)(1 − ζ(x))

[∫ ∞

0
β(x, y)u(y, s)dy + m1(x, s, ϕu, ϕz)

]
dx ds

∣∣∣

≤
(
2 + T‖g1‖∞ + 3

2
T‖β‖∞‖u‖L∞((0,T );L1(0,∞)) + T‖m1‖∞

)
supt∈[0,T ]

∫ ∞

n
u(x, t)dx.

(3.4.12)

Since u ∈ L∞((0, T );L1(0,∞)), supt∈[0,T ]

∫ ∞

n
u(x, t)dx → 0 as n → ∞. Thus, (3.4.12)

implies (3.4.11) holds.

To show ϕz(t) are continuous on [0, t], it suffices to show that

∫ ∞

0
z(x, t)dx =

∫ ∞

0
z(x, 0)dx +

∫ t

0

∫ ∞

0
γ2(x, s, ϕu, ϕz)z(x, s)dx ds

−
∫ t

0

∫ ∞

0
m2(x, s, ϕu, ϕz)z(x, s)dx ds.

(3.4.13)

Let η(x, t) = ρ(x), where ρ(x) = 1 for 0 ≤ x ≤ n, ρ(x) = 0 for n + 2 ≤ x < ∞ and
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−1 ≤ ρ′(x) ≤ 0 for n ≤ x ≤ n + 2. By the definition of solution of (3.1.1) we have that

∣∣∣
∫ ∞

0
(z(x, t) − z(x, 0))dx −

∫ t

0

∫ ∞

0
(γ2(x, s, ϕu, ϕz) − m2(x, s, ϕu, ϕz))z(x, s)dx ds

∣∣∣

=
∣∣∣
∫ ∞

n
(z(x, t) − z(x, 0))(1 − ρ(x))dx +

∫ t

0

∫ ∞

n
g2(x, s)ρx(x)z(x, s)dx ds

+
∫ t

0

∫ ∞

n
z(x, s)(1 − ρ(x))m2(x, s, ϕu, ϕz)dx ds

∣∣∣

≤ (2 + T‖g2‖∞ + T‖m2‖∞) supt∈[0,T ]

∫ ∞

n
z(x, t)dx.

(3.4.14)

Since z ∈ L∞((0, T );L1(0,∞)), supt∈[0,T ]

∫ ∞

n
z(x, t)dx → 0 as n → ∞. Thus, (3.4.14)

implies (3.4.13) holds.

Theorem 3.4.4. Suppose that (H1)-(H5) hold. Then the unique solution (3.1.1) exists

for 0 ≤ t < ∞.

Proof. By the definition of the solution of (3.1.1), we only need to show that ϕu(t) and

ϕz(t) are global in t. By (3.4.11), we have that

ϕu(t) = ϕu(0) +
∫ t

0

∫ ∞

0
γ1(x, s, ϕu, ϕz)u(x, s)dx ds

+1
2

∫ t

0

∫ ∞

0

∫ x

0
β(x − y, y)u(x − y, s)u(y, s)dy dx ds

−
∫ t

0

∫ ∞

0

[∫ ∞

0
β(x, y)u(y, s)dy + m1(x, s, ϕu, ϕz)

]
u(x, s)dx ds

= ϕu(0) +
∫ t

0

∫ ∞

0

(
γ1(x, s, ϕu, ϕz) − m1(x, s, ϕu, ϕz) − 1

2

∫ ∞

0
β(x, y)u(y, s)dy

)
u(x, s)dx ds

≤ ϕu(0) + ‖γ1‖∞
∫ t

0
ϕu(s)ds.

By Gronwall’s inequality, we obtain that ϕu(t) ≤ ϕu(0) exp(‖γ1‖∞t). By (3.4.13), we

have

ϕz(t) = ϕz(0) +
∫ t

0

∫ ∞

0
(γ2(x, s, ϕu, ϕz) + m2(x, s, ϕu, ϕz))z(x, s)dx ds

≤ ϕz(0) + ‖γ2‖∞
∫ t

0
ϕz(s)ds.

By Gronwall’s inequality, we obtain that ϕz(t) ≤ ϕz(0) exp(‖γ2‖∞t).
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Chapter 4

Numerical Solver for General
Size-Structured Population Model

4.1 Introduction

We wrote a user-friendly software package using Matlab and compiled them as stand-

alone package to solve the following coupled system of size-structured population model:

uI
t + (gI(x, P 1(x, t), P 2(x, t), · · · , PN(x, t))u)x

+mI(x, P 1(x, t), P 2(x, t), · · · , PN(x, t))u = 0, (x, t) ∈ (0, L] × (0, T ]

gI(0, P 1(0, t), P 2(0, t), · · · , PN(0, t))uI(0, t)

= CI(t) +

∫ L

0

βI(x, P 1(x, t), P 2(x, t), · · · , PN(x, t))uI(x, t)dx, t ∈ (0, T ]

uI(x, 0) = uI,0(x), x ∈ [0, L].

(4.1.1)

Here uI(x, t), I = 1, 2, . . . , N is the density of individuals of Ith subpopulation having

size x at time t, and

P I(x, t) =

∫ L

0

wI(x, y)uI(y, t)dy, (4.1.2)

is a function of density of uI , where N is the number of subpopulation, and wI(x, y)

is a weighing function. The function gI denotes the growth rate of an individual in

the Ith subpopulation, and mI denotes the mortality rate of an individual in the Ith

subpopulation. The function βI is the reproduction rate of an individual in the Ith
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subpopulation, while CI represents the inflow rate of zero-size individual from an external

source. In fact, we can easily see that the model (4.1.1) is a generalization for models

discussed in Chapter 1 and 2.

The remainder of this chapter is organized as follows. In section 4.2, we introduce

some features about the main figure. In section 4.3, we introduce how to initialize a

simulation. In section 4.4, we present some operations during a running simulation. In

section 4.5, we introduce some features after simulation is completed. In the last section

4.6, we introduce how to create a stand alone package.

4.2 Main Figure

The main figure of the size-structured population program is where the majority of the

interaction the user will used to create and run a simulation (see Figure 4.1). Two axes

located in left of the figure are used to display the graph of Population Density and Total

Population, respectively. By clicking on the Population popup menu, you can choose the

subpopulation that you want to display its corresponding figures or its parameter values.

The upper right hand of the figure is the status bar that gives the current status of the

simulation. Below that is the number of populations, maximum time (T ), maximum size

(L), all the parameters value for a population and some calculation push button. More

details are given below.

• DEFAULT Button:

This initializes all the parameters to their default values.

• STOP Button:

This stops a current simulation from finishing.

• CONTINUE Button:

This continues a previously completed simulation.



98

Figure 4.1: Main figure of the numerical solver.

• START Button:

This begins a new simulation.

• Number of Populations:

Number of subpopulation (N). Only positive integers will be accepted. Otherwise,

an error dialogue will be given. The default value is 1.

• Maximum Time:

The maximum time of the simulation running (T ). Only positive values will be

accepted. Otherwise, an error dialogue will be given. The default value is 1.5.

• Number of Time Steps:

The number of time steps of the numerical scheme. Only positive integer will be

accepted. The time mesh size is then given by T/number of time steps. The default

value is 150.

• Maximum Size:
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The maximum size of the population (L). Only positive values will be accepted.

Otherwise, an error dialogue will be given. The default value is 1.

• Number of Size Intervals:

The number of size intervals for the numerical scheme. Only positive integer will

be accepted. Otherwise, an error dialogue will be given. The spacial mesh size is

then given by L/Number of Size Intervals. The default value is 100.

• Initial Population Density, u(x, 0):

u(x, 0) is a nonnegative function with respect to x. The default function is 3 exp(−10(x−

0.01)2).

• Growth Rate, g(x, P1, P2, . . . , PN):

g(x, P1, P2, . . . , PN) is a nonnegative function depending on the variables x, P1,

P2, . . . , PN if the model involves N subpopulation. The default function is 5(1−

x)Q exp(−2Q), where Q = P1 + P2 + · · · + PN .

• Mortality Rate, m(x, P1, P2, . . . , PN):

m(x, P1, P2, . . . , PN) is a nonnegative function depending on the variables x, P1,

P2, . . . , PN if the model involves N subpopulation. The default function is Q/(1+

Q), where Q = P1 + P2 + · · · + PN .

• Reproduction Rate, b(x, P1, P2, . . . , PN):

b(x, P1, P2, . . . , PN) is a nonnegative function depending on the variables x, P1,

P2, . . . , PN if the model involves N subpopulation. The default function is

0.2x exp(−0.2Q), where Q = P1 + P2 + · · · + PN .

• Inflow Rate of Zero-Size Individual, C(t):

C(t) is a nonnegative function depending on the variable t. The default function is

0.
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• Weighing Funtion, w(x, y):

If the problem is a hierarchical size-structured population model, then w(x, y) is a

nonnegative function depending on both variables x and y. Otherwise, w(x, y) is

a nonnegative function only depending on the variable y. The default function is

(0.2(y ≤ x) + (y > x))y.

4.3 Initializing A Simulation

This section explains how to initialize a simulation step by step in order to make it

function properly.

1. Choose the number of subpopulations for the problems

Edit the number of subpopulations for the problems in the edit box under the mes-

sage Number of Populations. The default value for the number of populations

is 1.

2. Edit parameter values using Default Setup or A Custom-Made Setup.

• Default Setup:

– Press the Default button. This creates a Quasilinear Hierarchical Size

Structured Model in which the parameter values of Initial Population

Density is assumed to be the same for all the subpopulations, so are

Growth Rate, Mortality Rate, Reproductive Rate, Inflow of Zero-Size

Individuals and Weighing Function.

– To see a subpopulation parameters, just click on the Population popup

menu. If you want to change some of its parameters, just edit it in the

corresponding edit box.

• A Custom-Made Simulation:
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– Enter the maximum time (T ) and maximum size (L) for your problem, and

then enter the number of time steps and size intervals for the numerical

scheme.

– Enter the appropriate function forms for all the parameters of Population

1. Inappropriate forms will lead to an error message (see Figure 4.2). If the

number of populations for the problem is more than 1, repeat this process

by first clicking on the Population popup menu for another successive

subpopulation and then entering all of its parameters values.

Figure 4.2: Inappropriate function form result in error message.

3. Press the Start button to start this simulation.

4.4 Operations During A Running Simulation

This section explains what kind of operations that are available while a simulation is

currently running.

• Counter:

Notice at the top right hand corner of the main figure, the status message is dis-

playing a counter that increments by 1. This is the number of time steps the model
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has been running. The simulation will run until this counter reaches the Number of

Time Steps, unless the user stops the program prematurely or the Continue button

is pressed to start this simulation.

• Stopping a Simulation:

If you want to stop the simulation prematurely, just press the Stop button and the

simulation will end.

4.5 Features After A Simulation Is Completed

This section explains what kind of operations can be taken place when a previous simu-

lation is completed.

• Graphing:

You can see the graphs of Population Density and Total Population of a supopula-

tion by clicking on the Population popup menu (see Figure 4.3). For example, if

you want to see the graphs of population 2 (N ≥ 2), just drop down the Popula-

tion popup menu, choose the menu Population 2.
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Figure 4.3: Figure for simulation finished.

• Continuing a Simulation:
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If you want to continue a previous prematurely completed simulation, then just

press the Continue button. You can also change some the parameters value of a

subpopulation (growth rate, reproduction rate, mortality rate and weighing func-

tion) by just editing them in the corresponding edit box. Press the Continue

button to continue.

• Saving a Simulation:

This feature saves all of the parameters that the user enters and the all of the

outputs such as the total population number, etc. To save your simulation, click

on Save, which is located at the top of the main menu. The Saving Data window

will appear (see Figure 4.4). On the right hand side is the current directory and on

the left side is the files in the current directory. At the bottom right hand corner

is where you can enter the name of the saved file. This file will be saved as a .mat

file in the current directory. You can change the current directory by clicking on

the current directory window. When you are ready to saved this file, just click on

the OK button.

Figure 4.4: Figure for saving data.
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• Loading a Simulation:

This feature loads all of the parameters that the user enters and the all of the

outputs such as the total population, etc. To load a previous simulation, click

on Load, which is located at the top left of the main figure. The Loading Data

window will appear (see Figure 4.5). On the right hand side is the current directory

and on the left side is the files in the current directory. At the bottom right hand

corner is where you can enter the name of the load file or you can select the file

from the file listing in the current directory. You can change the current directory

by clicking on the current directory window. When you are ready to load this file,

just click on the OK button.

Figure 4.5: Figure for loading previous data.

4.6 Creating A Stand-Alone Application

In this section, we will use an example to explain how to create a stand-alone graph-

ics application in a step-by-step process. In order to do it, you must install MATLAB,
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MATLAB Compiler, C++ Compiler, MATLAB C++ Math Library and MATLAB C++

Graphics Library in your system. Suppose that you have 3 MATLAB files: HierCom-

munity.m, Default.m and StartHierCommnuity.m, which are located in the directory C:\

test. The process is as follows:

• Configuring mbuild

To configure your compiler, run mbuild -setup from MATLAB command prompt.

This allows you to choose the appropriate C compiler.

• Verifying mbuild

To verify that mbuild is properly configured on your system to create a stand-

alone application, copy <MATLAB>\extern\examples\cmath\ex1.c to your local

directory and cd to that directory, where <MATLAB> represents your MATLAB

installation directory. Then, at the MATLAB prompt, enter:

mbuild ex1.c

This should create a file ex1.exe. To launch your application, enter its name on the

command line. If mbuild is properly configured, you will get no error and obtain

an answer.

• Verifying the MATLAB Compiler.

To verify the MATLAB Compiler, copy <MATLAB>\extern\examples\compiler\hello.m

to your local directory and cd to that directory, and then type the following at the

MATLAB prompt:

mcc -em hello.m

This command should complete without errors.

• Create a new M-file as follows:
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mcc -p -B sglcpp HierCommunity.m Default.m StartHierCommnuity.m

Then run it. You will see that a new subdirectory C:\test\bin is created. In the

same time, all the M-files are translated into C++ source code suitable for your

own stand-alone external applications.

• Packaging the MATLAB Math Run-Time Libraries

– Run the MATLAB Math and Graphics Run-Time Library Installer by double-

clicking on the mglinstaller.exe file, which is located at <MATLAB>\extern\lib

\win32\ mglinstaller.exe. This program extracts the libraries from the archive.

You must install them in the directory C:\ test.

– You will see that another new subdirectory C:\test\toolbox is created. In the

same time, all the dynamic link libraries are created in the new subdirectory

C:\test\bin\win32, copy all the files located in subdirectory win32 and then

paste them in the directory C:\test

Remark: There are restrictions on what kind of MATLAB code can be compiled. The

MATLAB compiler cannot compile:

• Script M-files. If it is not a function file, just put a ‘function *’ line at the top,

where * denotes the file name.

• M-files containing inline or eval(exp1,exp2).

• M-file name is not the same as the name in the sentence ‘function ’.

• M-file containing audio command such as sound, etc.



Conclusion

We used the finite difference approximation method to study the existence-uniqueness of

the solution to a nonlinear hierarchical size-structured model in Chapter 1 . The crucial

step in this technique is to show that the developed finite difference approximation has a

bounded total variation. Then, through the compact imbedding of the space of functions

of bounded variation in L1(0, L) one can extract a convergent subsequence and show that

the limit is indeed a solution. This approach seems to be more applicable than that used

in [1, 2]. In particular, the approach used in [1] requires that vital rates depend only on

the total population. The techniques used in [2] require that the growth and reproduction

rates depend only on the size and the mortality rate depend only on the total population.

However, for our approach, it is applicable to all these cases. Furthermore, application

of such a technique results not only in the existence of solutions but also in a numerical

scheme that can be used to investigate the solution quantitatively. Notice that the order

of the convergence rate of the finite difference scheme developed in this chapter is only

one, we hope to develop a numerical scheme whose convergence rate is second order for

our model in the future work. Moreover, we want to consider other generalizations which

will increase the applicability of our model. In particular, we wish to study the case where

Q(x, t) =
∫ L

0
d(x, y)u(y, t)dy. Clearly this is a more general Q than the one considered

in our model. In fact, if d(x, y) = αw(y) for 0 ≤ y ≤ x and d(x, y) = w(y) for x < y ≤ L

then one obtains the environment Q considered in this chapter. We believe that the finite

difference approximation method used in this chapter works for this general Q. However,
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additional technicality will be needed.

We developed a least square technique in Chapter 2 for parameter identification in a

coupled system of nonlinear size-structured populations model. Recall that the observa-

tions in this chapter corresponds to the total population number instead of population

density used in [3, 4]. In practical situations it is impossible or there is much difficul-

ties to obtain the data on the population density. So our method has more practical

meaning than the one used in [3, 4]. Furthermore, the numerical experiments show that

this technique performs well and produce good confidence interval for the parameters.

However, we see that there is a slightly under biased estimator for some of numerical

examples when the infinite dimensional effects exist, we suspect that the upwind scheme

we adopted to approximate the model and the right hand sum for approximating all the

integrals may result in this bias. So we hope in the future to improve it by developing

a new numerical scheme to approximating the infinite dimensional state and parameter

space without losing the convergence, in the same time, we also hope this new numerical

scheme can have a higher order convergence rate.

We used a monotone method in Chapter 3 to establish the existence-uniqueness for a

nonlinear nonlocal size-structured phytoplankton-zooplankton aggregation model. The

idea behind such a method is to replace the actual solution in all the nonlinear and

nonlocal terms with some previous guess for the solution, then solve the resulting linear

model to obtain a new guess for the solution. Iteration of such a procedure yields the

solution of the original problem upon passing to the limit. The key step between the

consecutive guesses is a comparison principle. Note that the growth rates in our model

do not depend on the total population, we wish to develop a method in the future work

that will deal with this case. We also want to take the dynamics of nutrient into account

in the future.



Bibliography

[1] A. Calsina and J. Saldana, Asymptotic behavior of a model of hierarchically struc-

tured population dynamics, J. Math. Biol. 35 (1997), 967-987.

[2] K.W. Blayneh, Hierarchical size-structured population model, Dynam. Systems

Appl. 9 (2002), 527-540.

[3] K. Cho, Y. Kwon, Parameter estimation in nonlinear age-dependent population

dynamics, IMA J. Appl. Math. 62 (1999), 227–244.

[4] G. Dimitriu, Parameter estimation in size/age structured population models using

the moving finite element method, Numerical methods and applications, 420-429,

Lecture Notes in Comput. Sci., 2542, Springer, Berlin, 2003.



Hu, Shuhua. Bachelor of Science, Qingdao University, China, 1998;
Master of Science, Nanjing University of Aeronautics and Astronautics, China, 2001;
Doctor of Philosophy, University of Louisiana at Lafayette, December 2004

Major: Mathematics
Title of Dissertation: Structured Population Models: Well-Posedness, Approximation

and Parameter Estimation
Dissertation Director: Dr. Azmy S. Ackleh, Dr. Keng Deng
Pages in Dissertation: 104; Words in Abstract: 156

ABSTRACT

In Chapter 1, a finite difference approximation to a hierarchical size-structured model

with nonlinear growth, mortality and reproduction rates is developed. Existence-uniqueness

of the weak solution to the model is established and convergence of the finite difference

approximation is proved. Simulations indicate that the monotonicity assumption on the

growth rate is crucial for the global existence of weak solutions. Numerical results testing

the efficiency of this method in approximating the long-time behavior of the model are

presented.

In Chapter 2, a least-squares technique is developed for identifying unknown param-

eters in a coupled system of nonlinear size-structured populations. Convergence results

for the parameter estimation technique are established. Ample numerical simulations

and statistical evidence are provided to demonstrate the feasibility of this approach.

In Chapter 3, we consider a nonlinear size-structured phytoplankton-zooplankton ag-

gregation Model. We develop a comparison principle and construct monotone sequences

to show the existence of the solution. The uniqueness of the solution is also established.
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